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Abstract

Many explanations have been offered for why replication rates are low in

the social sciences, including selective publication, p-hacking, and treatment

effect heterogeneity. This article emphasizes that issues with the most com-

monly used approach for setting sample sizes in replication studies may also

play an important role. Theoretically, I show in a simple model of the pub-

lication process that we should expect the replication rate to fall below its

nominal target, even when original studies are unbiased. The main mech-

anism is that the most commonly used approach for setting the replication

sample size does not properly account for the fact that original effect sizes are

estimated. Specifically, it sets the replication sample size to achieve a nomi-

nal power target under the assumption that estimated effect sizes correspond

to fixed true effects. However, since there are non-linearities in the replica-

tion power function linking original effect sizes to power, ignoring the fact

that effect sizes are estimated leads to systematically lower replication rates

than intended. Empirically, I find that a parsimonious model accounting

only for these issues can fully explain observed replication rates in experi-

mental economics and social science, and two-thirds of the replication gap in

psychology. I conclude with practical recommendations for replicators. (JEL

C18, C53, C90)
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1. Introduction

In a 2016 survey conducted by Nature, 90% of researchers across various fields agreed that the

scientific community faces a ‘reproducibility crisis’ (Baker, 2016). Growing consensus has been

supported by high-profile replication projects which find that the replication rate – i.e. the

fraction of replications that are significant with the same sign as the original finding – is just
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36% in psychology, 61% in experimental economics, and 62% in experimental social science

(Open Science Collaboration, 2015; Camerer et al., 2016, 2018).

Understanding the underlying cause of low replication rates is important for researchers and

reformers aiming to improve the credibility of published research. There is a large and growing

literature examining a wide range of explanations, including selective publication against null

results (Franco et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2016, 2018);

p-hacking and other questionable research practices (Ioannidis, 2005, 2008; Simonsohn et al.,

2014; Brodeur et al., 2016, 2020, 2022; Elliott et al., 2022); and heterogeneity across original

studies and replications in research design and experimental subjects (Higgins and Thompson,

2002; Cesario, 2014; Simons, 2014; Stanley et al., 2018; Bryan et al., 2019).

This article focuses on an alternative issue that has received less attention. Its main theo-

retical result shows that issues with the most commonly used approach of setting sample sizes

in replication studies implies that the replication rate should be expected to fall short of its

intended target. Importantly, this is true even if original studies are unbiased and free from

common concerns over selective publication, p-hacking, treatment effect heterogeneity, and low

statistical power in original studies. To see why this is the case, note that the sample size

in replication studies is commonly set as a (decreasing) function of the observed effect size in

the original study (Maxwell et al., 2015; Open Science Collaboration, 2015; Camerer et al.,

2016). The actual approach, which I refer to as the common power rule, is designed to deliver

a prespecified replication probability target (e.g. 0.9) if the observed effect is exactly equal to

the unobserved true effect. In practice, replication rates consistently fall below the intended

power target, which is commonly interpreted as an indicator that original effects are biased

due to factors such as selective publication, p-hacking, or treatment effect heterogeneity (Open

Science Collaboration, 2015; Camerer et al., 2016). However, this article highlights that repli-

cation power is in fact a non-linear, locally concave function of the original estimate. Thus,

even if original estimates were unbiased, Jensen’s inequality implies that the expected replica-

tion rate must fall below the replication probability evaluated at the expectation, which, with

unbiased original estimates, equals the nominal target. To further develop the intuition behind

this central idea, I present a simple illustrative example in Section 2, before showing that it

applies to more general settings in Section 3.

Practically, the main result means that stated replication rate targets in large-scale replica-

tion studies using the common power rule do not in fact set an attainable benchmark against

which to judge observed replication rates; even if original studies were unbiased, such targets

are not reachable in expectation. I also show that the gap between the expected replication rate

and its intended power target is larger when the original published studies have low power, a

problem that we might expect to be severe in practice given evidence of low power in various em-
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pirical literatures (Button et al., 2013; Ioannidis et al., 2017; Stanley et al., 2018; Arel-Bundock

et al., 2023).

The main theoretical result applies to studies using what I refer to as the common power rule,

which sets replication power to detect the original estimated effect size. More recently, some

studies have begun to use a higher-power variant which I refer to as the fractional power rule,

wherein replication power is set to detect some fraction of the estimated effect size (Camerer

et al., 2018). Building on results in Andrews and Kasy (2019), I show that the expected

replication rate using the fractional power rule can be either above or below the stated power

target.

To what extent can these theoretical insights explain the low replication rates actually

observed in large-scale replication studies? Although the theory predicts that the actual repli-

cation rate will always fall below the target when using the common power rule, the magnitude

of this gap is an empirical question. Likewise, for replication studies using the fractional power

rule, both the sign and the magnitude of the gap is an empirical question.

To evaluate the importance of replication power issues in practice, I empirically investigate

the results of three replication studies, two of which use the common power rule (Open Science

Collaboration, 2015; Camerer et al., 2016) and one of which uses the fractional power rule

(Camerer et al., 2018). In each application, I estimate the empirical model in Andrews and

Kasy (2019) using a ‘metastudy approach’ that corrects for publication bias to obtain the un-

derlying distribution of latent studies prior to screening by the publication process. I then use

the estimated latent distribution of studies to simulate what we should expect the replication

rate to be based on the power calculations actually implemented in replications. Importantly,

the model and its predictions are based only on data from original studies and assume away

researcher manipulation and heterogeneous treatment effects. The empirical exercise asks, in

effect, whether observed replication rates could have been predicted by issues with replica-

tion power alone, before the replication studies themselves were actually undertaken and in a

parsimonious model without treatment effect heterogeneity or p-hacking.

I find that the predicted replication rate is almost identical to observed replication rates

in experimental economics (60% vs. 61%) and experimental social science (54% vs. 57%).

Replications in experimental economics implemented the common power rule, while those in

experimental social science used a fractional power rule.1 These empirical results are consistent

with the null hypothesis that observed replication rates in these studies are driven entirely by

issues with power calculations, rather than other issues such as p-hacking or treatment effect

1In the experimental social science replications (Camerer et al., 2018), replicators used a fractional power
rule in the first stage of replications predicted here, where replication power was set to detect 75% of the original
effect size with 90% intended power.
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heterogeneity. Of course, failure to reject a hypothesis does not mean that it is true, and thus

we should not necessarily conclude that these other factors are not present in these settings.

Nevertheless, other evidence has also suggested a relatively limited role for p-hacking in the

context of lab experiments studied here (Brodeur et al., 2016, 2020; Imai et al., 2020).

In psychology, the predicted replication rate is 55%, whereas the observed replication rate is

35%. Since the intended power target was 92%, issues with power calculations explain only two-

thirds of the gap in psychology. In the case of psychology, we can therefore reject the null that

the replication gap is entirely explained by issues with power calculations. This provides strong

evidence that some other factors are important in psychology. Some possibilities discussed in

the literature include heterogeneous treatment effects, p-hacking, and differences in replicability

across subfields.

In an extension, I examine the relative effect size (defined as the mean of the ratio of

the replication effect size and the original effect size), a common complementary continuous

measure of replication. I generate relative effect size predictions in each field using a similar

method as for the replication rate. I once again find that the predictions are quite similar to

observed outcomes in economics (0.70 vs. 0.66). The model is somewhat farther off for social

sciences (0.53 vs. 0.44), perhaps suggesting some role for other factors, although the difference

is not statistically distinguishable from zero. In psychology, predictions are quite far off (0.64

vs. 0.37), again providing strong evidence for alternative factors.

When analyzing relative effect sizes, it is important to note that the common practice of

only choosing statistically significant results to replicate will mechanically induce upward bias

in original estimates, irrespective of whether or not the published literature is biased. Since

replication estimates must regress to the mean, relative effect sizes should be expected to be

below the nominal target of one. This means that the nominal target is actually unattainable

in expectation, much like for the replication rate. Note that selecting only significant results to

replicate might also be expected to lead to lower replication rates. However, in Subsection 3.3, I

show that the impact of selection on the replication rate is actually theoretically ambiguous, as

it also tends to select studies with larger true effects that have higher replication probabilities.

In Subsection 4.4, I find that the overall impact of selection on the replication rate is empirically

small.

The results in this article highlight that the common power rule and selection on significance

make both the binary measure of replication and the relative effect size measure difficult to

interpret. In light of these limitations, I make several practical recommendations to replicators

in the final section. First, I recommend focusing on relative effect sizes over the binary measure

of replication, and caution against the practice of selecting only significant results to replicate.

This removes the regression-to-the-mean issue and restores the nominal target of one as a
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meaningful benchmark. I then suggest formally testing whether relative effect sizes deviate

from one using the prediction interval approach in Patil et al. (2016). A key advantage of this

approach is that it is more informative about the level of selective publication than the binary

measure of replication.2

This article contributes to the large metascience literature and the growing literature on

predicting research outcomes (Ioannidis, 2005; Franco et al., 2014; Gelman and Carlin, 2014;

Dreber et al., 2015; Maxwell et al., 2015; Anderson and Maxwell, 2017; Stanley et al., 2018;

Miguel and Christensen, 2018; Altmejd et al., 2019; Amrhein et al., 2019; DellaVigna et al.,

2020; Gordon et al., 2020; Frankel and Kasy, 2022; DellaVigna and Linos, 2022; Nosek et al.,

2022). Andrews and Kasy (2019) and Kasy (2021) provide stylized examples showing that the

replication rate can vary widely depending on the latent distribution of studies (i.e. the joint

distribution of true effects and standard errors for published and unpublished studies). The-

oretically, this article builds on this observation by establishing that the expected replication

rate is bounded above by its nominal target owing to issues with common power calculations in

replication studies. This result holds for any distribution of latent studies. Empirically, I pro-

vide evidence that among the profusion of explanations for low replication rates, a parsimonious

model accounting only for issues with replication power calculations and low power in original

studies can adequately account for observed replication rates in experimental economics and

social science.

The remainder of the article is organized as follows. Section 2 introduces the key intuition

behind the main theoretical result in a minimalistic setting. Section 3 extends these ideas to

more general settings. Section 4 presents the empirical applications. Finally, Section 5 offers

some practical recommendations to replicators.

2. Illustrative Example

In this section, I present a simple example to illustrate the main ideas. Consider a study

examining the impact of framing on consumer choice. Suppose that the type of framing being

studied boosts purchases of a particular product of interest, and denote this unobserved true

effect by θ ą 0. Researchers hoping to learn about this effect conduct an experiment and

publish their findings in a leading journal. Their main results show that the estimated effect

of framing on purchases is equal to X ą 0 and is statistically significant at the 5% level.

Several years after publication, a different team of researchers becomes interested in testing

2The replication rate is not very informative about selective publication or the ‘file-drawer’ problem (An-
drews and Kasy, 2019; Kasy, 2021). This is for the simple reason that the replication rate only includes
significant results in its definition, and hence tells us very little, or nothing, about the degree to which null
results are censored. Subsection 3.3 expands on this point.
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the reliability of this finding. To do this, they conduct a replication using identical procedures

to the original study, but using a new set of experimental participants. Of primary interest is

whether the original result ‘replicates’, in the sense that the estimated effect in the replication

has the same sign as the original study and is statistically significant. Assuming the replication

estimate is approximately normally distributed, the probability of this outcome – or replication

power – is equal to 1 ´ Φ
`

1.96 ´ θ
σr

˘

, where the replication standard error σr is determined by

the choice of the replication sample size and Φp¨q denotes the normal cdf.3

A central problem faced by replicators is how to choose the replication standard error σr – or

equivalently the replication sample size – to deliver a prespecified intended power target of, say,

0.9. If θ were known, then setting σr “ θ{
`

1.96 ´ Φ´1p1 ´ 0.9q
˘

would yield replication power

equal to target power of 0.9. However, in reality, θ is unobserved. The most common solution

has been to replace the unobserved true effect θ with the observed original estimate X, leading

to what I refer to in this paper as the common power rule: σrpXq “ |X|{
`

1.96´Φ´1p1´ 0.9q
˘

.

Under this rule for setting the replication standard error, replication power to detect a positive

effect is given by

RP pXq “ 1 ´ Φ
´

1.96 ´
θ

|X|

`

1.96 ´ Φ´1
p1 ´ 0.9q

˘

¯

(1)

Clearly, if the original estimateX coincides exactly with the true effect θ, thenRP pXq “ 0.9,

as intended. However, this reasoning fails to account for the fact that the original estimate is a

random variable and that RP p¨q is a non-linear function. This article shows that the replication

function RP p¨q is in fact a non-linear, locally concave function. Thus, even if original estimates

were unbiased, by Jensen’s inequality we have that ErRP pXqs ă RP pErXsq “ RP pθq “ 0.9.

In other words, the expected replication rate under the common power rule is below its nominal

target, even in the ‘ideal’ scenario where original studies are unbiased and there is no publication

bias, p-hacking, or treatment effect heterogeneity.

How much might this matter in practice? Section 4 provide a fuller answer to this question

by analyzing three large-scale replication studies. However, for illustrative purposes, suppose

that original estimates are drawn from an Np1
2
, 1q distribution, and hence unbiased and free

from concerns over distortions from selective publication and p-hacking. If this were the case,

then the expected replication rate based on the equation above would be ErRP pXqs “ 0.59,

which, despite the unbiasedness of original estimates, is far below its nominal target of 0.9.4

3Approximate normality holds under mild conditions and is widely assumed in practice.
4This calculation assumes that all original estimates are replicated, irrespective of whether or not they are

statistically significant. In practice, replicators typically choose only significant results to replicate. Performing
the same calculation but conditioning on statistically significant original results with a positive gives a much
lower replication rate: ErRP pXq|1.96 ď Xs “ 0.10; note also that this number is practically unchanged if
significant results are replicated irrespective of the sign of the original estimate. Subsection 3.3 and Appendix
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3. Theory

3.1. Model of Large-Scale Replication Studies

This section shows that the idea illustrated in the previous section applies to much more general

settings. Appendices in the supplementary materials contain proofs for all theoretical results.

For the general framework, I consider the model in Andrews and Kasy (2019). Suppose a large-

scale replication study is conducted in an empirical literature of interest and we observe the

estimated effect sizes and standard errors for original studies and their replications. Let upper

case letters denote random variables, lower case letters realizations. Latent studies (published

or unpublished) have a superscript * and published studies have no superscript. The model of

the DGP has five steps:

1. Draw a population parameter and standard error: Draw a research question with

population parameter (Θ˚) and standard error (Σ˚):

pΘ˚,Σ˚
q „ µΘ,Σ

where µΘ,Σ is the joint distribution of latent true effects and latent standard errors.

2. Estimate the effect: Draw an estimated effect from a normal distribution with param-

eters from step 1:

X˚
|Θ˚,Σ˚

„ NpΘ˚,Σ˚2
q

3. Publication selection: Selective publication is modeled by the function pp¨q, which

returns the probability of publication for any given t-ratio. Let D be a Bernoulli random

variable equal to 1 if the study is published and 0 otherwise:

PpD “ 1|X˚
{Σ˚

q “ p

ˆ

X˚

Σ˚

˙

(2)

4. Replication selection: Replications are sampled from published studies pX,Σ,Θq (i.e.

latent studies pX˚,Σ˚,Θ˚q conditional on publication pD “ 1q). Replication selection is

modeled by the function rp¨q, which returns the probability of being chosen for replication

for any given t-ratio. Let R be a Bernoulli random variable equal to 1 if the study is

chosen for replication and 0 otherwise:

PpR “ 1|X{Σq “ r

ˆ

X

Σ

˙

(3)

C explore the interaction between selection and non-linearities in more detail.
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5. Replication: A replication draw is made with:

Xr|Θ, X,Σ,Σr, D “ 1, R “ 1 „ N
´

Θ,Σ2
r

¯

We observe i.i.d draws of
`

X,Σ, Xr,Σr

˘

from the conditional distribution of
`

X˚,Σ˚, Xr,Σr

˘

given D “ 1 and R “ 1. I consider what happens in this model when the replication standard

error, Σr, is set to detect the original estimate X with a prespecified power level 1 ´ β, where

β is the target probability of Type II error. This approach is implemented, for example, in

Open Science Collaboration (2015) and Camerer et al. (2016), and a survey of replications the

psychology literature by Anderson and Maxwell (2017) shows that it is the most commonly

implemented approach. I refer to this as the common power rule, which is formalized as follows:

Definition 1 (Common Power Rule). The common power rule to detect original effect size x

with intended power 1 ´ β sets the replication standard error to

σrpx, βq “
|x|

1.96 ´ Φ´1pβq
(4)

This is equivalent to setting the replication sample size to N ˆ
“

σ
|x|

`

1.96 ´ Φ´1pβq
˘‰2

, where N

and σ are the original study’s sample size and standard deviation, respectively.

The justification for the common power rule is that the power in any given replication study

will equal its intended power target of 1 ´ β when the original estimate coincides exactly with

the true effect, x “ θ (Lemma B1). In practice, replication rates consistently fall below this

benchmark, which is typically taken as evidence that original estimates are biased because of

selective publication or p-hacking. While this argument has intuitive appeal, it does not account

for the fact that replication power is a non-linear function of the random original estimate X;

thus, even if ErX|Θ “ θs “ θ, the replication probability evaluated at the expectation (which

equals the intended target) will not, in general, be equal to the expected replication rate.

This argument is developed more formally in the following subsections. We make two

assumptions in the following analysis. First, we impose that the publication probability pp¨q is

weakly increasing in the absolute t-ratio over the statistically significant region of the support,

and symmetric around zero. Intuitively, this means that studies that are ‘more significant’ have

a (weakly) higher probability of being selected for publication.

Assumption 1 (Publication Selection Function). Let pptq be weakly increasing for all t ě 1.96,

and pptq “ pp´tq for all t ě 1.96. Allow pp¨q to take any form when t P p´1.96, 1.96q. Finally,

let pptq ‰ 0 for all |t| ě 1.96.
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This allows for very general forms of publication bias (or lack thereof). Assuming symmetry

in the publication selection function may be appropriate in some settings but not others. For

example, symmetric publication bias may not be appropriate in the literature examining the

impact of the minimum wage on employment, since there are priors about the sign of the

effect. However, for large-scale replication studies, which are the primary focus of this paper,

the assumption is more plausible. This is because large-scale replication typically include a

range of studies examining different outcomes and hence, the relative signs of effects across

studies are arbitrary.

Next, we make the same assumptions about the replication selection mechanism, rp¨q:

Assumption 2 (Replication Selection Function). Let rptq be weakly increasing for all t ě 1.96,

and rptq “ rp´tq for all t ě 1.96. Allow rp¨q to take any form when t P p´1.96, 1.96q. Finally,

let rptq ‰ 0 for all |t| ě 1.96.

This includes, for example, random sampling from published, significant studies. This

assumption is plausible in all three empirical applications examined in this paper, which I

discuss in further detail in Subsection 4.1.

Finally, note that the article uses three distinct concepts of statistical power. First, power

in an original study is defined as the probability of obtaining a statistically significant estimate

in the same direction as the true effect: 1 ´ Φp1.96 ´ θ
σ

q when θ ą 0; and Φp´1.96 ´ θ
σ

q when

θ ď 0.5 Second, power in a replication study (or the ‘replication probability’; Definition 2

below) is defined as the probability of obtaining a significant effect with the same sign as the

original study, and will depend on the rule for setting replication power. Finally, the intended

power target of any given rule for setting replication power is denoted by 1 ´ β, where β is the

target probability of Type II error.

3.2. Common Power Calculations and Low Replication Rates

This subsection defines the replication rate and then discusses the main result. First, we define

the replication probability of a single study and then use this to define the expected replication

rate over multiple studies.

Definition 2 (Replication Probability of Individual Study). The replication probability of a

published study pX,Σ,Θq chosen for replication pR “ 1q is

RP
´

X,Θ, σrpX, βq

¯

“ P

˜

|Xr|

σrpX, βq
ě 1.96, signpXrq “ signpXq

ˇ

ˇ

ˇ
X,Θ, β, R “ 1

¸

(5)

5The arguments made throughout are essentially unchanged if we consider the alternative definition of
obtaining a statistically significant estimate irrespective of the sign.
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This definition captures the dual requirement that the replication estimate is statistically

significant and has the same sign as the original study.

Definition 3 (Expected Replication Rate). The expected replication probability is defined over

published studies pX,Σ,Θq which are chosen for replication pR “ 1q and statistically significant

pSX “ 1q. It is equal to

E
“

RP
`

X,Θ, σrpX, βq
˘
ˇ

ˇR “ 1, SX “ 1
‰

(6)

Substituting the common power rule in Definition 1 for the replication standard error gives

the expected replication rate under the common power rule. Note that while insignificant

results may be replicated, they are not included in the replication rate in Definition 3. This

matches the main definition reported in most large-scale replication studies (Klein et al., 2014;

Open Science Collaboration, 2015; Camerer et al., 2016, 2018; Klein et al., 2018).6 With this,

we can state the main theoretical result:

Proposition 1 (Common Power Rule Implies the Expected Replication Rate is Always Below

Target). Consider the model in 3.1. Under Assumptions 1 and 2, if replication standard errors

are set by the common power rule to detect original estimates with intended power 1 ´ β ě

0.8314, then

E
“

RP
`

X,Θ, σrpX, βq
˘ˇ

ˇR “ 1, SX “ 1
‰

ă 1 ´ β (7)

From a practical perspective, Proposition 1 means that replicators who set the replication

sample size to detect original effect sizes should not expect the replication rate to reach its

intended target, regardless of whether or not there is selective publication, and even under ‘ideal’

conditions with no researcher manipulation, replications with identical designs and comparable

samples (i.e. no heterogeneity in true effects), no measurement error, random sampling in

replication selection, and high-powered original studies. That the intended target is not in fact

attainable in expectation underscores fundamental difficulties in interpreting replication rate

gaps observed in large-scale replication studies.

Figure 1 provides the key intuition underlying this result. It plots the replication probability

of a single study in Definition 2 as a function of the original effect X, for a fixed true effect

θ and assuming that the common power rule is applied with an intended power target of

1 ´ β “ 0.9. Under a prespecified common power rule with a fixed true effect, the replication

6Replication power calculations themselves are typically designed with this definition in mind. Complemen-
tary replication measures include: the relative effect size; whether the 95% confidence interval of the replication
covers the original estimate; replication based on meta-analytic estimates; the 95% prediction interval approach
(Patil et al., 2016); the ‘small telescopes’ approach (Simonsohn, 2015); and the one-sided default Bayes factor
(Wagenmakers et al., 2016).
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Figure 1. Replication Probability Function Conditional on Θ

Notes: Replication probability function in Definition 2 conditional on a fixed θ. The replication standard error
is calculated using the common power rule in Definition 1 to detect original effect sizes with 90% power (i.e.
σrpX, 0.1q “ |X|{3.242).

probability is only a function of the original estimate X. Denote this conditional replication

probability function as RP pX|θq. It is clear that RP pX|θq is non-linear in X, which implies

that ErRP pX|θqs ‰ RP pErX|θs|θq, even if X is unbiased. If RP p¨|θq were globally concave,

Proposition 1 would immediately follow from Jensen’s inequality. However, it is only locally

concave around the true effect θ. The proof of Proposition 1 shows that when 1 ´ β ě 0.8314,

local concavity is sufficient to arrive at the same result for any distribution of latent studies.

The difference between the expected replication rate and its intended target is larger when

power in original studies is low. This is because the concavity of RP p¨|θq is more pronounced

when power in original studies is low. As an illustration, Figure 2 plots the relationship between

the expected replication rate and power in original studies, again assuming the intended power

target in replications is set to 90%, close to mean reported intended replication power in Open

Science Collaboration (2015) and Camerer et al. (2016). To highlight the impact of power in

original studies, the relationship is derived assuming no p-hacking, no selective publication,

and no heterogeneity (i.e. assuming exact replications). The plot shows that the expected

replication rate is bounded above by its intended target of 90%, in line with Proposition 1, and

is especially low when power in original studies is low. For instance, the expected probability of

replicating an original study with 33% power is around 50%. With relatively low estimates of

power across various empirical literatures, this provides strong theoretical grounds for expecting

low replication rates in practice, even in the absence of issues with p-hacking or treatment effect
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Figure 2. Original Power and the Expected Replication Rate Under the Common Power Rule

Notes: Power of original study and the expected replication rate under the common power rule are both
functions of ω “ θ{σ (normalized to be positive). Power in the original study to obtain a significant effect with
the same sign as the true effect is equal to 1´Φp1.96´ωq. The expected replication rate is calculated by taking
106 draws of Z from Npω, 1q; simulating replications under the common power rule to detect the original effect
size with 90% power (Definition 1); and then calculating the fraction which ‘replicate’ by being significant and
having the same sign as the original study. This figure assumes no p-hacking, no heterogeneity in true effects,
no selective publication and random replication selection.

heterogeneity. For intuition, note that if the true effect is zero, the replication probability is

0.025 (regardless of the how the replication standard error is chosen). Continuity implies that

when original studies have true effects close to zero (and therefore power in original studies is

low), replication probabilities will also be very low.

Proposition 1 applies to replications implementing the common power rule. Some more

recent replication studies have used a higher-power variant which I refer to as the fractional

power rule, wherein replication power is set to detect some fraction ψ of the estimated effect

size (Camerer et al., 2018, 2022). In Proposition B3 in Appendix B, I show that the expected

replication rate under the fractional power rule can be either above or below the stated power

target 1´β. More specifically, the expected replication rate can range anywhere between 0.025

and Φr1.96´ 1
ψ

`

1.96´Φ´1pβq
˘

s ą 1´ β depending on the statistical power of original studies.

For instance, if ψ “ 3
4
and 1 ´ β “ 0.9, as in the first-stage in Camerer et al. (2018), then the

expected replication rate could range anywhere between 0.025 and 0.99. These results build on

those in Andrews and Kasy (2019), who argue that replication rates may vary widely depending

on the latent distribution of studies. Finally, note that as with Proposition 1, these conclusions

hold whether or not there is selective publication, and even in the absence of p-hacking or
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treatment effect heterogeneity.

3.3. Additional Factors

The primary focus thus far has been on the impact of the concavity of the replication probability

function on expected replication rates. The reason for emphasizing this over other factors is

because this specific issue alone turns out to largely explain observed replication rates, at least

in economics and social sciences. In this subsection, I explore three additional factors that

might also be expected to contribute to low replication rates, but whose impact turns out to

be limited in practice.

Consider first the common perception that selective publication favoring significant results

– either by authors or journals – produces more ‘false-positives’ in the published literature,

which are in turn harder to replicate. This theory is important to address because it enjoys

substantial support: over 90% of researchers cite ‘selective reporting’ as a contributing factor

to irreproducibility, more than any other factor (Baker, 2016). However, Andrews and Kasy

(2019) and Kasy (2021) point out that the replication rate in fact tells us very little about

selective publication. Both provide examples showing that the replication rate can take on

almost any value depending on the latent distribution of true effects, irrespective of how selec-

tive publication is. In fact, in Proposition B4 in Appendix B, I show that the the replication

rate in the Andrews and Kasy (2019) model is completely insensitive to selective publication

against null results.7 This follows from the simple fact that the replication rate definition does

not include statistically insignificant results. Thus, even if it were the case that insignificant

results were being widely published, they would not be included in the replication rate.8,9 Con-

sequently, the replication rate is ill-suited to measuring the extent of the ‘file-drawer’ problem

with respect to statistically insignificant results.

The second factor is related to the first: the replication rate induces upward bias in original

estimates because it is, by definition, calculated on a selected sample of significant findings.

Replication estimates will therefore mechanically regress to the mean (Galton, 1886).10 This

7The proposition proves this more generally for measures gp¨q that condition on statistical significance.

Setting gpx, σ, xr, βq “ 1

”

|xr|

σrpx,σ,βq
ě 1.96, signpxrq “ signpxq

ı

gives the result for the replication rate measure.
8A caveat is that the model assumes a fixed distribution of latent studies, whereas in practice it may be

endogenous, for example, if researchers engage in more specification searching when publication bias against
null results is high (Simonsohn et al., 2014; Brodeur et al., 2016, 2020, 2022).

9Appendix D examines measures of replication which may be more sensitive to changes in selective publi-
cation than the replication rate. For evaluating efforts to reduce selective publication, simulation results show
that the prediction interval approach (Patil et al., 2016), when calculated over both significant and insignif-
icant results, provides a useful alternative to the replication rate, the confidence interval measure, and the
meta-analysis approach.

10For a formal statement and proof, see Proposition B2 in Appendix B.
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distortion immediately implies that relative effect sizes, which measure the ratio of replication

estimates to original estimates, should be below one in expectation, even when original estimates

in the published literature are unbiased. While it might be intuitive that this selection would

lower the replication rate, the impact is actually theoretically ambiguous when true effects differ

across studies, and hence an empirical question. This is because conditioning on significance

also tends to select studies for replication with larger true effects, which, all else equal, have

higher replication probabilities. In economics and psychology, using the empirical methodology

described in the next section, I find that these two effects broadly offset one another, such that

the overall impact of selection into significance is relatively small. This is discussed in greater

detail in Appendix C.

Finally, a third factor potentially affecting replication rates is that when original estimates

are significant but with the ‘wrong’ sign, the probability of replication is very low because it

requires the highly unlikely event that the replication estimate also has the wrong sign and is

statistically significant. This can be seen in Figure 1, where the replication probability when

the original estimate has the wrong sign is bounded above by 0.025.11 Empirically, this turns

out to have a small impact on replication rates because the probability of observing a significant

original effect with the wrong sign is relatively low.

4. Empirical Applications

In this section, I test the null hypothesis that the expected replication rate from the model

in Section 3 matches the replication rate actually observed in three large-scale replication

studies. Since the model does not include p-hacking or heterogeneity, the null tests whether

observed replication rates can be entirely explained by issues with common power calculations

emphasized in Proposition 1. To test this hypothesis, the theory requires that we estimate the

latent distribution of studies. This can then be used to generate replication rate predictions

which can be compared to observed replication rates. The procedure is as follows:

1. Estimate the latent distribution of studies, µΘ,Σ using an augmented version of the An-

drews and Kasy (2019) model applied to three large-scale replications.12 Estimation does

not use any data from replications.

2. Use the estimated model to simulate replications and predict what fraction of significant

results would replicate, absent any other issues such as p-hacking or heterogeneity.

11Lemma A1.4 in Appendix A shows that the replication probability under the common power rule approaches
zero as x approaches zero from below, and approaches 0.025 and x approaches negative infinity.

12Note that estimating the latent distribution of studies requires modeling selective publication. However,
with estimates of the latent distribution in hand, replication rate predictions in step 2 will not depend on the
degree to which null results are suppressed, since the replication rate is defined only over significant results.
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3. Compare these predictions (which do not use any data from the replications) to actual

replication outcomes.

4.1. Replication Studies

I examine three replication studies. Camerer et al. (2016) replicate results from all 18 between

subjects laboratory experiments published in American Economic Review and Quarterly Jour-

nal of Economics between 2011 and 2014. Open Science Collaboration (2015) replicate results

from 100 psychology studies in 2008 from Psychological Science, Journal of Personality and So-

cial Psychology, and Journal of Experimental Psychology: Learning, Memory, and Cognition.

Following Andrews and Kasy (2019), I consider a subsample of 73 studies with test statistics

that are well-approximated by z-statistics. Camerer et al. (2018) replicate 21 experimental

studies in the social sciences published between 2010 and 2015 in Science and Nature.

In Camerer et al. (2016), replicators used the common power rule to detect original effects

with at least 90% power. In Open Science Collaboration (2015), replication teams were in-

structed to achieve at least 80% power using the common power rule, and encouraged to obtain

higher power if feasible. Reported mean intended power was 92% in both cases. Camerer et al.

(2018) implemented a higher-powered fractional power rule consisting of two stages. In the

first stage, replicators aimed to detect 75% of the original effect with 90% power. In the second

stage, further data collection was undertaken for insignificant results from the first stage, such

that the pooled sample from both stages was calibrated to detect half of the original effect size

with 90% power. I predict replication outcomes in the first stage.13

Note that the theoretical result in Proposition 1 showing that the expected replication rate

is bounded above by its intended target applies to the common power rule and not to the

fractional power rule. For the fractional power rule, the expected replication rate can either

above or below the stated power target (Proposition B3). In both cases, the magnitude of the

gap is an empirical question.

Finally, note that Proposition 1 assumes that the probability of selecting significant studies

for replication is weakly decreasing in the p-value (Assumption 2). This assumption plausibly

holds in all three empirical applications. In psychology, replicators simply chose the last ex-

periment reported in each article for replication. In economics and social science experiments,

replicators selected the ‘most important statistically significant result’ within a study, as em-

phasized by the authors. In these two applications, Assumption 2 would be violated if, among

the set of statistically significant results with p-values are below 0.05, authors systematically

emphasize a result as more important if it has a higher p-value, which seems implausible.

13Predicting second-stage outcomes is complicated by the fact that one study that was ‘successfully’ replicated
in the first stage was erroneously included in the second stage.
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4.2. Estimation

To calculate the expected replication rate, it is necessary to estimate the latent distribution of

studies µΘ,Σ. To do this, I estimate an augmented version of the empirical model in Andrews

and Kasy (2019). Specifically, Andrews and Kasy (2019) develop an empirical model to estimate

the marginal distribution of true effects Θ˚, but not of standard errors Σ˚. Since predictions

of the replication rate also require knowledge of the distribution of Σ˚, I augment the model

to estimate the joint distribution of pΘ˚,Σ˚q. For details on the likelihood, see Appendix E.

Estimation is based on the ‘metastudy approach’, which only uses data from original studies,

and not from the replication studies whose outcomes are being predicted. I assume that Σ˚

follows a gamma distribution with shape and scale parameters denoted by (κσ, λσ). For all other

aspects of the model, I implement identical model specifications as Andrews and Kasy (2019),

whose focus is on estimating publication bias. Matching their specifications, I assume that

|Θ˚| follows a gamma distribution with shape and scale parameters pκθ, λθq; and that the joint

probability of being published and chosen for replication, ppX{Σq ˆ rpX{Σq, is a step-function

parameterized by βp. The inclusion of steps at common significance levels p1.64, 1.96, 2.58q

varies slightly across applications owing to different approaches for choosing which studies to

replicate.14 In estimation, I normalize the sign of the original estimates to be positive.

Identification for the empirical model requires that latent true effects are statistically inde-

pendent of latent standard errors, a common assumption in meta-analyses. This assumption

is not required for Proposition 1, but only for estimating the empirical model since it is used

to identify the publication selection function. Andrews and Kasy (2019) present an alternative

‘systematic replication studies approach’ to estimation, which they suggest can be used as a

check the reliability of the meta-study estimates. This is because the ‘systematic replication

studies approach’ does not rely on the independence assumption (although it does use data

from replication studies which makes it undesirable for the purposes of prediction). Across ap-

plications, this alternative approach yields broadly similar estimates of the selection parameters

as the ‘meta-study approach’, lending support to the reliability of these estimates.

Table 1 presents the maximum likelihood estimates from the meta-study approach, together

with reproduced estimates from Andrews and Kasy (2019) for comparison.15 For common pa-

14Details on mechanisms for replication selection are outlined in Appendix F. With Z “ X{Σ, the selection
functions in each application are: rpX{Σq ˆ ppX{Σq91

`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in economics;

rpX{Σq ˆ ppX{Σq91
`

|Z| ă 1.64qβp1 ` 1
`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in psychology; and rpX{Σq ˆ

ppX{Σq91
`

1.96 ď |Z| ă 2.58qβp3 ` 1
`

|Z| ě 2.58q for social science experiments.
15Estimates for psychology in this article are slightly different to the meta-study estimates reported in

Andrews and Kasy (2019) (their Table 2). The difference is due to a misreported p-value in the raw psychology
data for one study, which leads to an erroneous outlier in the distribution of original study standard errors.
Table 1 in this article reproduces estimates of their model with the corrected data. Excluding this study in the
augmented model leads to very similar replication rate predictions.
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Table 1 – Maximum Likelihood Estimates

Latent true effects |Θ˚| Latent standard errors Σ˚ Selection parameters
κθ λθ κσ λσ βp1 βp2 βp3

Economics experiments

Augmented model 1.426 0.148 2.735 0.103 0.000 0.039 –
(1.282) (0.072) (0.536) (0.031) (0.000) (0.050) –

Andrews and Kasy (2019) 1.343 0.157 – – 0.000 0.038 –
(1.285) (0.075) – – (0.000) (0.050) –

Psychology experiments

Augmented model 0.782 0.179 4.698 0.044 0.012 0.303 –
(0.423) (0.055) (0.605) (0.008) (0.007) (0.134) –

Andrews and Kasy (2019) 0.734 0.185 – – 0.012 0.300 –
(0.405) (0.056) – – (0.007) (0.134) –

Social science experiments

Augmented model 0.077 0.644 6.249 0.028 0.000 0.000 0.611
(0.106) (0.333) (1.828) (0.009) (0.000) (0.000) (0.425)

Andrews and Kasy (2019) 0.070 0.663 – – 0.000 0.000 0.583
(0.091) (0.327) – – (0.000) (0.000) (0.418)

Notes: Maximum likelihood estimates for economics (Camerer et al., 2016), psychology (Open Science Collab-
oration, 2015) and social sciences (Camerer et al., 2018). Robust standard errors are in parentheses. Latent
true effects and standard errors are assumed to follow a gamma distribution; parameters (κ, λ) are the shape
and scale parameters, respectively. In economics and psychology, joint publication and replication probability
coefficients are measured relative to the omitted category of studies significant at 5 percent level. Parameters
βp1, βp2 in this case are the relative publication probabilities of studies that are insignificant at the 10% level;
and significant at the 10% level but not at the 5% level. For example, in experimental economics, an estimate
of βp2 “ 0.039 implies that results which are significant at the 5% level are about 26 times more likely to be
published and chosen for replication than results that are significant at the 5% level. Note that in economics,
results which were insignificant at thew 10% level were not selected for replication and hence βp1 “ 0. In social
sciences, the omitted category is studies significant at the 1% level. Results below the 5% significance level were
not chosen for replication so that βp1 “ βp2 “ 0, and βp3 measures the publication probability of a result that
is significant at the 5% level but not at the 1% level, relative to that of a a significant result at the 1% level.
Andrews and Kasy (2019) estimates are reproduced from accessible data and code from their analysis.

rameters, estimates are very close. Appendix E examines the sensitivity of the main results to

the parametric assumptions for the distribution of latent true effect and standard errors. Over-

all, different parametric assumptions (e.g. log-normal) give rise to replication rate predictions

with very similar accuracy to those presented in the main results below.

4.3. The Predicted Replication Rate

Model parameter estimates in Table 1 can be used to generate replication rate predictions by

simulating replications using the following procedure:

1. Draw 106 latent (published or unpublished) research questions and standard errors

pθ˚sim, σ˚simq from the estimated joint distribution µ̂Θ,Σpκ̂θ, λ̂θ, κ̂σ, λ̂σq.

2. Draw original estimates x˚sim|θ˚sim, σ˚sim „ Npθ˚sim, σ˚sim2q for each latent study.
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3. Use the estimated selection parameters β̂p to determine the subset of studies that are

published and chosen for replication.

4. For studies chosen for replication, calculate the replication standard error σsimr according

to the following rule

σsimr pxsim, β, ψq “
ψ ¨ |xsim|

1.96 ´ Φ´1pβq
(8)

where ψ “ 1 and 1 ´ β “ 0.92 in economics and psychology, which corresponds to the

common power rule; and ψ “ 3
4
and 1 ´ β “ 0.9 in social science experiments, which

corresponds to a fractional power rule.16

5. Simulate replications by drawing replication estimates xsimr |θsim, σsimr „ Npθsim, σsim2
r q

The replication rate prediction is then formed by calculating the fraction of simulated repli-

cations in which the original study is replicated with the same sign and statistical significance.

More formally, let txi, σi, xr,i, σr,iu
Msig

i“1 denote the (simulated) set of published, replicated origi-

nal studies that are significant at the 5% level, and their corresponding replication results. Msig

is the number of replicated originally-significant studies. Further restricting attention to the

set of statistically significant results is done to match the procedure in large-scale replications

where only significant results were included in the replication rate calculation (or chosen for

replication in the first place).17,18 The predicted replication rate is the simulated analogue of

the expected replication rate in Definition 3, and thus equal to the share of replication esti-

mates xr,i that are statistically significant and have the same sign as the corresponding original

estimate xi

1

Msig

Msig
ÿ

i“1

1

´

|xr,i| ě 1.96σr,i, signpxr,iq “ signpxiq
¯

(9)

16This assumes all simulated replications set intended power equal to the mean of reported intended power.
In practice, there was some variation in the application of the power rule around the mean. Appendix G reports
predicted replication rates allowing for variation in intended power across studies that matches the empirical
variation in each application. Results are very similar and in fact slightly more accurate in all three applications
(61.5% in economics; 52.2% in psychology; and 55.5% in social science).

17In both experimental economics and psychology, a small number of original results whose p-values were
slightly above 0.05 were treated as ‘positive’ results and included in the replication rate calculation. To match
this, I set the cutoff for significant findings for the purposes of replication equal to the smallest z-statistic that
was treated as a ‘positive’ result for replication. Predictions are almost identical with a strict 0.05 significance
threshold.

18Note that original estimates are normalized to be positive in estimation but not in the calculation of the
predicted replication rate.
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4.4. Results

Table 2 presents the results. In experimental economics, the predicted replication rate is 60%,

which is very close to the observed rate of 61.1%. This is an “out-of-sample” prediction in

the sense that the model is estimated only using information from the original studies, and

does not incorporate any information from the replications. The accuracy of this prediction

is consistent with the null hypothesis that the observed replication rate in economics can be

explained entirely by a parsimonious model accounting only for issues with power calculations,

and not other issues such as p-hacking or treatment effect heterogeneity. Failure to reject the

null hypothesis does not, of course, imply that it is true, and thus we should not necessarily

conclude that these other factors are not present. Nonetheless, other evidence points to a

relatively limited role for p-hacking in the context of lab experiments studied here, perhaps due

to fewer researcher degrees of freedom as compared with observational settings (Brodeur et al.,

2016, 2020; Imai et al., 2020). Note that despite the very accurate point estimate, the standard

error is relatively large, which implies limited power to reject the model’s prediction (perhaps

owing to the fact that there are only 18 replicated studies).

In psychology, the model predicts a replication rate of 54.5%. This is well below mean

intended power of 92%, but higher than the observed replication rate of 34.8%. In this case,

the model accounts for around two-thirds of the replication rate gap, and we can reject the

null hypothesis that the replication gap is entirely explained by issues with common power

calculations. The unexplained portion of the gap in psychology provides evidence that other

factors discussed in the literature and not incorporated in the model may be important, includ-

ing heterogeneity in true effects, p-hacking, and measurement error. Another possibility is that

the model should account for differences in replicating main effects and interaction effects, and

differences across subfields (Open Science Collaboration, 2015; Altmejd et al., 2019).

Low predicted replication rates can largely be attributed to the issue that replication power

calculations do not account for the concavity of the power function. Appendix C shows that the

two other factors affecting replication rates in the model, and discussed in Subsection 3.3, turn

out to have a relatively small impact empirically. The first factor is that original estimates with

the wrong sign have very low replication probabilities, as the chance of obtaining a significant

replication estimate with the wrong sign is very low. This has a small impact on expected

replication rates because the probability that significant original estimates have the wrong sign

is relatively low in both economics (3.0%) and psychology (5.4%). The second factor is that the

replication rate is calculated on a selected sample of significant findings, which mechanically

induces upward bias in original estimates that can make successful replications less probable.

Perhaps surprisingly, this has only a small negative impact on the expected replication rate
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Economics experiments Psychology Social sciences
Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Predicted replication rate 0.600 0.545 0.543

(0.122) (0.054) (0.134)

Table 2 – Replication Rate Predictions

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as the share of
original estimate whose replications have statistically significant findings of the same sign. Figures in the first
row report the mean intended power reported in both applications. The second row shows observed replication
rates. The third row reports the predicted replication rate in equation (9) calculated using parameter estimates
Table 1. The fourth row shows standard errors for the predicted replication rate which are calculated using the
delta method. In social sciences, power is set to detect three-quarters of the original effect size with 90% power.
This approach does not have a fixed nominal target for the replication rate. See Appendix E for robustness to
alternative parametric assumptions in the estimated model.

in economics while actually slightly increasing it in psychology. As discussed in Subsection

3.3, this is because selection on significance also leads to the replication of more studies with

larger true effects (since they are more likely to be significant), which have higher replication

probabilities (Figure 2). These two effect broadly offset one another such that the overall

impact of selection is relatively small.

A popular variant for the common power rule is the fractional power rule, where replication

power is set to detect some fraction of the original effect size with a given level of statistical

power (e.g. Camerer et al. (2018) and Camerer et al. (2022)). Theoretically, under the specific

rule applied in Camerer et al. (2018), the expected replication rate can range anywhere between

0.025 and 0.99 depending on the power in original studies.19 Empirically, the predicted repli-

cation rate for the experimental social sciences is 54.3%, which is very close to the observed

rate of 57.1%. The difference is statistically indistinguishable from zero, although the standard

error of the prediction is quite large. Similarly to experimental economics, the accuracy of

the point estimate of the prediction implies that we cannot reject the null hypothesis that the

observed replication rate can be explained by a parsimonious model accounting only for issues

with power calculations.

Finally, for the social sciences, note that I do not estimate the relative importance of alter-

native factors in explaining low replication rates as I do for the other applications e.g. selection

on significance and original estimates with the wrong sign. This is because the approach de-

scribed in Appendix C is based on decomposing the gap between the replication rate and its

19Proposition B3 shows that the expected replication rate can range between 0.025 and 1´Φr1.96´ 1
ψ

`

1.96´

Φ´1pβq
˘

s. With the fraction of original effect size to detect equal to ψ “ 3{4, and intended power set to
1 ´ β “ 0.9, the upper range equals 0.99.
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nominal target, and the fractional power rule does not provide a clear nominal target.

4.5. Extensions

I examine three extensions. In Appendix H, I use the empirical models estimated in Table 1

to generate predicted average relative effect sizes, using a similar procedure to the replication

rate predictions. I find that the predicted relative effect size is quite similar to the observed

value in economics (0.70 vs. 0.66). In the social sciences, the model is somewhat farther off

(0.53 vs. 0.44), which may suggest a role for other factors such as p-hacking or heterogeneity,

although the difference is not statistically distinguishable from zero. Finally, in psychology,

the prediction is quite far off (0.64 vs. 0.37), again providing strong evidence for alternative

factors. Note that relative effect sizes are affected both by selection of significant results for

replication and the level of statistical power in original studies.20

A second extension considers the proposed rule of setting replication power equal to original

power in Appendix G. In a review of 108 psychology replications by Anderson and Maxwell

(2017), 19 (17.6%) implemented this approach. In all three applications, this approach leads

to lower predicted replication rates than under the common power rule.

Given the issues that stem from conditioning on statistical significance, the third extension

in Appendix I examines the suggestion of extending the replication rate definition to include

null results that are ‘replicated’ if their replications are also insignificant. For empirical models

in economics and psychology, this ‘extended’ replication rate remains below intended power

under the common power rule.

5. Practical Recommendations

The results thus far highlight some important limitations in the common approaches used for

conducting and interpreting replication outcomes. In particular, (i) expected replication rates

cannot reach stated nominal power targets under the common power rule used for setting

replication power (Proposition 1); and (ii) relative effect sizes are below their nominal target of

one in expectation when replicators only select significant results to replicate, because selection

implies that replication estimates must regress to the mean (Proposition B2). This makes

observed replication rates and relative effect sizes difficult to interpret because, in both cases,

there is no clear benchmark against which to judge them. Importantly, issues (i) and (ii) are

present even in the absence of p-hacking, publication bias, and treatment effect heterogeneity.

20Figure H1 in Appendix H shows that the expected relative effect size is an increasing function of power in
original studies and approaches one as original power approach 100%.
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In light of these limitations, what should researchers running replications do? In this section,

I make four practical recommendations relevant to different stages of the replication process,

discussing each in greater detail below.

1. Replication selection: for large-scale studies replicating a number of findings, do not

impose a selection rule that only chooses significant results for replication.

2. Replication sample sizes: set replication sample sizes independently of the magnitude

of original estimates.

3. Replication measures: focus on the relative effect size and formally test whether it

deviates from one using the prediction interval approach (Patil et al., 2016).

4. Interpreting replication outcomes: report the relative effect size in conjunction with

prediction intervals and include an explicit discussion addressing the power of the test.

The motivation for the first recommendation is clear from previous discussions, namely, that

samples selected on extreme characteristics, such as statistical significance, will regress to the

mean in repeated samples. Selection of this kind implies that relative effect sizes will be below

one in expectation, even when original findings are unbiased, and should therefore be avoided

where possible. For example, replicating a randomly chosen set of results would restore the

nominal target of one as a meaningful benchmark.

Second, as an alternative to the common power rule or the fractional power rule, replicators

should consider setting replication sample sizes independently of the magnitude of original

estimates. This approach was taken, for instance, in Protzko et al. (2024), where all replications

were conducted using a target sample of at least 1,500 participants. Another approach would be

to determine the replication sample size by scaling the original sample size by some constant

factor (e.g. double the original sample size). There are several reasons for this. First, the

common power rule and the fractional power rule are designed to detect original estimates

with a prespecified level of power, and hence are not properly suited to replicating null results

(as is suggested in the first recommendation). Second, setting the replication sample size

independently of the original effect size is required for validity of the recommended prediction

interval approach.21

The third recommendation is to focus on relative effect sizes over the binary measure of

replication. The relative effect size can also be connected to a formal statistical test based

on the prediction interval approach in Patil et al. (2016), which tests the null hypothesis that

21More formally, the prediction interval approach requires that original and replication estimates are statis-
tically independent: X KK Xr.
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X „ Npθ,Σ2q and Xr „ Npθ,Σ2
rq — i.e. that both the original and replicated estimates

are (uncensored) normal draws centered around the same true effect. Under this null, the

probability that the relative effect size X{Xr lies within the prediction interval
`

1´ 1.96
rΣ
X
, 1`

1.96
rΣ
X

˘

equals 0.95, where rΣ ”
a

Σ2 ` Σ2
r.

22 In other words, when the relative effect size

deviates sufficiently far from one, we can reject the null that both the original and replication

estimates come from normal distributions with the same true effect. See Appendix J for details

on the derivation, and some guidance on implementation.23

There are at least three advantages to using prediction interval approach. First, it connects

the relative effect size to a well-specified null hypothesis test which is tightly linked to common

concerns of replicators over publication bias, p-hacking, and treatment effect heterogeneity.

Note also that choosing to replicate only significant results immediately violates the null hy-

pothesis. The null in the prediction interval approach can have advantages over the null in the

binary replication measure of no true effect. For instance, under the null in the binary measure,

the replication probability can be high if the replication sample size is very large, even if the

original study is severely biased due to p-hacking. By contrast, with large sample sizes, the

prediction interval approach is likely to reject the null. This is because the prediction interval

approach captures not only the sign and significance of the replication estimate, but also its

magnitude.

A second advantage is that it explicitly incorporates sampling variation from both the

original study and the replication study. In particular, the range of estimates consistent with

the null decreases as the sample sizes in the original and replication studies increase i.e. as
rΣ decreases. By contrast, the binary measure of replication under the common power rule

only considers the original estimate, not its standard error. This is an undesirable property,

since, intuitively, with very noisy original estimates, it should be more difficult to make precise

conclusions about whether a replication study reproduces the original result. That power to

reject the null in the prediction interval approach depends on the power of original studies also

highlights the usefulness of well-powered original studies for making precise conclusions about

replicability.

A third advantage of the prediction interval approach is that it allows us to test for the

presence of publication bias (conditional on following the first recommendation). This is not

22Note that I recast the prediction interval from the original Patil et al. (2016) study in terms of relative effect
sizes. The motivation behind this reformulation is simply that relative effect sizes are commonly reported in
the replication literature, making them more convenient to interpret and compare across studies. However, for
the replication of null results, it may be more appropriate to use the unnormalized prediction interval approach,
namely, to reported whether Xr P pX ´ 1.96rΣ, X ` 1.96rΣq. This is because dividing by an original estimate
that is close to zero might lead to extreme values which are difficult to interpret.

23An illustrative example provides steps on how to covert the prediction interval from Fisher transformation
units – which are used for inference (Fisher, 1915) – to correlation coefficient units.
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the case for the replication rate. As discussed in Subsection 3.3, the replication rate is defined

only over significant original studies and is therefore insensitive to whether or not null results

are censored by publication bias. Moreover, a definition of replication “success” which is based

on significance does not extend naturally to replicating original null results. By contrast, the

prediction interval measure is low when selective publication is high, and approaches 95% as

the probability of publishing null results approach one. For more details, see Appendix D. This

is arguably a very important property for a replication metric, since publication bias remains

a central concern for replicators and the scientific community more broadly.

The fourth and final recommendation concerns how the relative effect size should be reported

and interpreted. When interpreting replication outcomes, researchers should discuss both: (i)

the distance of relative effect sizes from one; and (ii) whether prediction intervals contain

scientifically significant deviations from one. Jointly considering these metrics is important for

making an overall assessment of the reproducibility of the original finding. For example, it is

possible to observe a relative effect size well below one yet still fail to reject the null due to

large prediction intervals. In this case, the test has limited power to reject the null and suggests

a need to focus on better powered original and/or replication studies in order to reach more

robust conclusions.

6. Conclusion

The prominence of the replication rate stems in part from its apparent transparency and ease of

interpretation. However, caution should be applied when interpreting the replication rate from

large-scale replication studies using the common power rule for setting replication power. In

general, intended replication targets are not attainable in expectation. Moreover, the replication

rate gap will be particularly large when original power is low. Empirical evidence supports the

importance of these theoretical insights. In a parsimonious model with neither heterogeneity

nor p-hacking, predicted replication rates in experimental economics and social science are very

close to observed values. This is consistent with the null hypothesis that problems with power

calculations alone are sufficient to explain observed replication rates in these fields.

As an alternative to focusing on the binary measure of replication, replicators might consider

focusing primarily on relative effect sizes and formally testing whether they deviate from one.

Moreover, replicators should be cautious about selecting only significant results for replication,

as this induces distortions which complicate the interpretation of replication outcomes.
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Online Appendix

This appendix contain proofs and supplementary materials for “Why Are Replication Rates So

Low?”

A. Properties of the Replication Probability Function

This Appendix derives a number of properties of the replication probability function (Definition

1). The simply provides a convenient, compact notation. The remaining properties consider

the replication probability function under the common power rule to detect original effect sizes

with 1 ´ β intended power (Definition 1). Recall that the replication probability for original

study px, σ, θq is equal to

RP
`

x, θ, σrpx, σ, βq
˘

“ P

˜

|Xr|

σrpx, βq
ě 1.96, signpXrq “ signpxq

¸

(10)

To provide intuition of the properties, Figure A1 provides an illustration of the replication

probability function for different values of x under the common power rule for 1 ´ β “ 0.9 and

a fixed value of θ ą 0. Note that Lemma A1 assumes θ ą 0, although flipping the sign simply

reflects the replication function about the y-axis.

Figure A1. Replication Probability Function

Notes: Example of the replication probability function under the common power rule with intended power
p1 ´ βq “ 0.9. The two vertical lines around θ marks the open interval over which the replication probability
function is strictly concave, where r˚ is given by equation (12).
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Lemma A1 (Replication Probability Function Properties). Let θ ą 0. The replication proba-

bility function satisfies the following properties:

1. For any replication standard error σrpx, σ, βq, the replication probability for an original

study px, σ, θq can be written compactly as

RP
`

x, θ, σrpx, σ, βq
˘

“ 1 ´ Φ

ˆ

1.96 ´ signpxq
θ

σrpx, σ, βq

˙

(11)

The remaining properties assume the replication standard error σrpx, βq is set using the

common power rule in Definition 1 with intended power 1 ´ β:

2. If 1 ´ β ą 0.025, then RP
`

x, θ, σrpx, βq
˘

is strictly decreasing in x over p´8, 0q and

p0,8q.

3. If p1 ´ βq ą 0.6628, then RP
`

x, θ, σrpx, βq
˘

is strictly concave with respect to x over the

open interval pmax t0, r1 ´ r˚pβqsθu, r1 ` r˚pβqsθq, where

r˚
pβq “ ´

`

2 ` 1.96.hpβq
˘

`

d

`

2 ` 1.96.hpβq
˘2

´ 4 ˆ p1 ` 1.96.hpβq ´ hpβq2
˘

2
ą 0 (12)

with hpβq “
`

1.96 ´ Φ´1pβq
˘

.

4. The limits of the replication probability function with respect to x are

lim
xÑ8

RP
`

x, θ, σrpx, βq
˘

“ 0.025 and lim
xÑ´8

RP
`

x, θ, σrpx, βq
˘

“ 0.025 (13)

lim
xÒ0

RP
`

x, θ, σrpx, βq
˘

“ 0 and lim
xÓ0

RP
`

x, θ, σrpx, βq
˘

“ 1 (14)

5. Suppose X˚ „ Npθ, σ2q. Then E
“

RP
`

X, θ, σrpX, βq
˘‰

Ñ 1 ´ β as θ Ñ 8 for fixed σ.

Proof of 1.

The probability in equation (10) equals
“

1px{σ ě 1.96q ˆ
`

1 ´ Φ
`

1.96 ´ θ
σr

˘‰

`
“

1px{σ ď

´1.96q ˆ Φ
`

´ 1.96 ´ θ
σr

˘‰

. This captures the two requirements for ‘successful’ replication: the

replication estimate must attain statistical significance and have the same sign as the original

estimate. Equation (11) is obtained using the symmetry of the normal distribution, which

implies that Φptq “ 1 ´ Φp´tq for any t. ˝
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Proof of 2.

The first derivative of the replication probability function with the common power rule is

BRP
`

x, θ, σrpx, βq
˘

Bx
“

$

&

%

´ θ
x2

`

1.96 ´ Φ´1pβq
˘

ˆ ϕ
´

1.96 ´ θ
x

`

1.96 ´ Φ´1pβq
˘

¯

, x ą 0

´ θ
x2

`

1.96 ´ Φ´1pβq
˘

ˆ ϕ
´

´ 1.96 ´ θ
|x|

`

1.96 ´ Φ´1pβq
˘

¯

, x ă 0

(15)

These are strictly negative whenever
`

1.96 ´ Φ´1pβq
˘

ą 0 ðñ p1 ´ βq ą 0.025. ˝

Proof of 3.

First, note that for x ą 0, the second derivative of the replication probability function with the

common power rule is

B2RP
`

x, θ, σrpx, βq
˘

Bx2
“

ˆ

hpβqθ

x3

˙

ϕ

ˆ

1.96 ´
hpβqθ

x

˙

«

1 `

ˆ

hpβqθ

x

˙ˆ

1.96 ´
hpβqθ

x

˙

ff

(16)

Let x “ p1 ` rqθ. Substituting this into the previous equation and simplifying shows that

equation (16) is strictly negative when the following inequality is satisfied

r2 `
`

2 ` 1.96hpβq
˘

.r `
`

1 ` 1.96hpβq ´ hpβq
2
˘

ă 0 (17)

The solution to the quadratic equation has a unique positive solution r˚pβq whenever p1 ´

βq ą 0.6628. To see this, note that there exists a unique positive solution when
`

1`1.96hpβq ´

hpβq2
˘

ă 0. This quadratic equation in hpβq must have a unique positive and negative solution

in turn, since the parabola opens downwards and equals 1 when hpβq “ 0. The positive root

can be obtained from the quadratic formula, which gives 2.38014. Since the quadratic function

opens downward, this implies that for any hpβq ą 2.38014, we have
`

1`1.96hpβq ´hpβq2
˘

ă 0.

Thus, a unique positive solution to equation (17) exists whenever this condition is satisfied. In

particular, a unique positive solution exists whenever

hpβq “ 1.96 ´ Φ´1
pβq ą 2.38014

ðñ Φp1.96 ´ 2.38014q ą β

ðñ p1 ´ βq ą 0.6628 (18)

The unique positive solution for equation (17) can again be obtained by the quadratic
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formula, which gives equation (12). Note that for any r ą 0 where the inequality for concavity

in equation (17) is satisfied, the same must also be true of ´r, since it makes the left-hand-

side strictly smaller. This implies that the replication probability function is strictly concave

(since its second derivative is strict negative) over pmax t0, r1 ´ r˚pβqsθu, r1 ` r˚pβqsθq, where

the maximum is taken because the replication probability function is discontinuous at 0. This

follows because of the properties of the quadratic function. Specifically, suppose fpxq is a

parabola that opens upward and intersects the y-axis at a negative value. Then for any two

points pa, bq with a ă b and fpaq, fpbq ă 0, it must be that fpcq ă 0 for any c P pa, bq. ˝

Proof of 4.

Substituting the common power rule into the replication probability function gives

RP
`

x, θ, σrpx, βq
˘

“ 1 ´ Φ

ˆ

1.96 ´
θ

x

`

1.96 ´ Φ´1
pβq

˘

˙

(19)

The values of the limits can be seen immediately from this expression. ˝

Proof of 5.

This proof consists of two steps. In the first step, I show that the replication probability

function approaches linearity in x in an even interval around θ, as θ Ñ 8 for fixed σ. To see

this, fix r P p0, 1q. Then the second derivative evaluated at any point cθ P
`

rθ, p1 ` rqθ
˘

equals

B2RP
`

x, θ, σrpx, βq
˘

Bx2

ˇ

ˇ

ˇ

ˇ

ˇ

x“cθ

“

ˆ

hpβq

c3θ2

˙

ϕ

ˆ

1.96 ´
hpβq

c

˙

«

1 `

ˆ

hpβq

c

˙ˆ

1.96 ´
hpβq

c

˙

ff

(20)

This approaches zero as θ Ñ 8, which implies that RP
`

x, θ, σrpx, βq
˘

approaches linearity

in x over the interval
`

rθ, p1 ` rqθ
˘

in the limit.

For the second step, see that as θ Ñ 8 with fixed σ, we have that

P
“

X˚
P

`

rθ, p1 ` rqθ
˘

|θ, σ
‰

“ Φ

ˆ

p1 ` rqθ ´ θ

σ

˙

´ Φ

ˆ

rθ ´ θ

σ

˙

Ñ 1 (21)

That is, the probability of drawing X˚ inside of the range
`

rθ, p1 ` rqθ
˘

approaches one in

the limit. But from the first step we know that the replication probability function is linear

over this range as θ Ñ 8 with fixed σ. This implies in the limit that E
“

RP
`

X, θ, σrpX, βq
˘‰

“

RP
`

ErXs, θ, σrpX, βq
˘

“ RP
`

θ, θ, σrpX, βq
˘

“ 1 ´ β, as shown in Lemma B1.
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B. Proofs of Propositions

For convenience, the proofs sometimes use notation distinguishing selection functions over sig-

nificant and insignificant regions. For example, the publication probability function pp¨q is equal

to

ppX˚
{Σ˚

q “

$

&

%

psigpX
˚{Σ˚q if S˚

X “ 1

pinsigpX
˚{Σ˚q if S˚

X “ 0

where S˚
X is an indicator variable that equals one if

ˇ

ˇX˚{Σ˚
ˇ

ˇ ě 1.96 and zero otherwise. Similar

notation is applied to the replication selection function rp¨q and the joint publication and

replication function gp¨q ” pp¨q ˆ rp¨q.

Lemma B1 (Justification of the common power rule). Consider a published study px, σ, θq. If

x “ θ and a replication uses the common power rule to detect the original effect with intended

power 1 ´ β, then

RP
´

θ, θ, σrpθ, βq

¯

“ 1 ´ β (22)

Proof. Substitute the common power rule in the replication probability function derived in

Lemma A1.1 in Appendix A. If x “ θ, then

RP
`

θ, θ, σrpθ, βq
˘

“ 1´Φ

ˆ

1.96´ signpθq
θ

σrpθ, βq

˙

“ 1´Φ

ˆ

1.96´
θ

θ

`

1.96´Φ´1pβq
˘

˙

“ 1´β (23)

Proof of Proposition 1: For notational convenience, let pXsig,Σsig,Θsigq denote the distri-

bution of latent studies pX˚,Σ˚,Θ˚q conditional on being statistically significant at the 5%

level p|X˚{Σ˚| ě 1.96q, published pD “ 1q, and selected for replication pR “ 1q. The expected

replication probability (Definition 2) under the common power rule (Definition 1) is equal to

EX˚,Σ˚,Θ˚|D,R,S˚
X

”

RP
´

X˚,Θ˚, σrpX
˚, βq

¯ˇ

ˇ

ˇ
D “ 1, R “ 1, |X˚

{Σ˚
| ě 1.96

ı

“EXsig ,Σsig ,Θsig

”

RP
`

Xsig,Θsig, σrpXsig,Σsig, βq
˘

ı

“EΣsig ,Θsig

„

EXsig |Σsig ,Θsig

”

RP
´

Xsig,Θsig, σrpXsig, βq

¯

|Θsig “ θ,Σsig “ σ
ı

ȷ

(24)
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where the last equality uses the Law of Iterated Expectations. The proof shows that the condi-

tional expected replication probability satisfies EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, βq
˘

|Θsig “

θ,Σsig “ σ
‰

ă 1 ´ β, which implies that the expected replication probability is also less than

intended power 1´β. For greater clarity in what follows, let E
“

RP
`

Xsig|θ, σ, βq
‰

be shorthand

for EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, βq
˘

|Θsig “ θ,Σsig “ σ
‰

.
Note that the conditional expected replication probability can be written explicitly as

E
“

RP
`

Xsig|θ, σ, βq
‰

“

ż

RP
`

Xsig|θ, σ, βq ¨

g
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx

ş

x1 g
`

x1

σ q 1
σϕ

´

x1´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx1
(25)

where gp¨q ” pp¨qˆrp¨q is the joint selection function for both publication and replication. Note

that the density differs from a normal density in two respects: (1) the selection function g
`

¨
˘

reweights the distribution; and (2) conditioning on statistical significance truncates original

effects falling in the insignificant region p´1.96σ, 1.96σq.

Without loss of generality, assume θ ą 0. We first introduce some notation. Define pl˚, u˚q “
`

p1´ r˚qθ, p1` r˚qθ
˘

when r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

when r˚ ě 1, and where r˚ depends

on the value of β as specified in equation (12). In both cases, the replication probability

function is strictly concave over the interval with mid-point θ. Concavity is guaranteed by

Lemma A1.3, which states that if p1´βq ą 0.6628, then RP
`

x, |θ, σ, β
˘

is strictly concave over

the open interval
`

max t0, r1 ´ r˚sθu, r1 ` r˚sθ
˘

. This Proposition assumes p1 ´ βq ą 0.8314,

so the condition is satisfied.

Consider first the case where r˚ ě 1 so that pl˚, u˚q “
`

0, 2θ
˘

. The conditional replication

probability can be written as

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

“ P

´

Xsig ă l˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ă l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ą u˚

ı

ă P

´

Xsig ă l˚
¯

0.025`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

`

1´β
˘

(26)

In the last line, the first term in the sum uses the fact that the maximum value of the

replication probability when x ă l˚ “ 0 is 0.025 (Lemma A1.2 and Lemma A1.4 in Appendix

A). The third term follows because RP
`

2θ|θ, σ, β
˘

is the maximum value the function takes

over x ą u˚ “ 2θ, since the function is strictly decreasing over x ą 0 (Lemma A1.2); and

therefore that RP
`

2θ|θ, σ, β
˘

ă RP
`

θ|θ, σ, β
˘

“ 1 ´ β, where the equality is shown in Lemma

B1. From equation (26), we can see that E
“

RP pXsig|θ, σ, βq|l˚ ď Xsig ď u˚
‰

ă 1 ´ β is a

sufficient condition for E
“

RP
`

Xsig|θ, σ, βq
‰

ă 1 ´ β.

Before showing that this sufficient condition is satisfied, we show that the identical sufficient
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condition is also applicable in the second case, where r˚ P p0, 1q so that pl˚, u˚q “
`

p1´r˚qθ, p1`

r˚qθ
˘

. First, we can again express the conditional replication probability as a weighted sum

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

“ P

´

Xsig ď l˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ď l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ě u˚

ı

ă P

´

Xsig ď l˚
¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

RP
´

u˚|θ, σ, β
¯

(27)

The strict inequality follows for two reasons. For the first term in the sum, one is the

maximum value the function can take for any x. For the third term, RP pu˚|θ, σ, βq is the

function’s maximum value over x ě u˚, since the integrand is strictly decreasing over positive

values (Lemma A1.2). With an additional step, we can write this inequality as

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

ă
1

2

´

1 ´P

´

l˚ ď Xsig ď u˚
¯¯´

1 ` RP
`

u˚
ˇ

ˇθ, σ, β
˘

¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(28)

This follows because PpXsig ď l˚q ď PpXsig ě u˚q and RP pu˚|θ, σ, βq ă 1. That is, increas-

ing the relative weight on the maximum value of one, such that both tails are equally weighted,

must lead to a (weakly) larger value. The weak inequality PpXsig ď l˚q ď PpXsig ě u˚q

required for this simplification is shown below:

Lemma B2. Suppose X|θ, σ follows the truncated normal pdf in equation (25). Then for any

r˚ P p0, 1q, the following inequality holds: P
`

Xsig ď p1 ´ r˚qθ
˘

ă P
`

Xsig ě p1 ` r˚qθ
˘

.

Proof. First, note that
`

p1 ´ r˚qθ, p1 ` r˚qθ
˘

is an interval over the positive real line centered

at θ. Consider two cases:

Case 1: Let p1 ´ r˚qθ ď 1.96σ. Define the normalization constant C “
ş

x1 g
`

x1

σ
q 1
σ
ϕ

´

x1´θ
σ

¯

1
`

|x
σ

| ě 1.96
˘

dx1. Then

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 ď
1

C

ż 8

2θ`1.96σ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1`
1

C

ż 2θ`1.96σ

max t1.96σ,p1`r˚qθu

gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1`r˚qθ
¯

(29)
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Consider the weak inequality. Note that the mid-point between ´1.96σ and 2θ ` 1.96σ

is θ. Thus, with no selective publication (i.e. pptq “ 1 for all t), we would have equality

owing to the symmetry of the normal distribution. However, recall that gsigp¨q is symmetric

about zero and weakly increasing in absolute value (Assumptions 1 and 2). It follows that

|2θ ` 1.96σ| ą | ´ 1.96σ| implies gsigp|2θ ` 1.96σ|q ě gsigp| ´ 1.96σ|q; using this fact and

symmetry of the normal distribution about θ gives the weak inequality. The strict inequal-

ity follows because the additional term is strictly positive, since gsigp¨q is assumed to be non-zero.

Case 2: Let p1 ´ r˚qθ ą 1.96σ. The argument is similar to the first case:

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż p1´r˚qθ

1.96σ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż 2θ´1.96σ

p1`r˚qθ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

`
1

C

ż 2θ`1.96σ

2θ´1.96σ
gsig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1 ` r˚qθ
¯

(30)

The inequality in equation (28) can be further simplified by placing restrictions on intended

power. In particular, if intended power satisfies 1 ´ β ě 0.8314, then

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

ă

´

1 ´P
`

l˚ ď Xsig ď u˚
˘

¯

`

1 ´ β
˘

`P
`

l˚ ď Xsig ď u˚
˘

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(31)

This follows because with u˚ “ p1 ` r˚qθ, we have

1

2

´

1 ` RP
`

u˚
ˇ

ˇθ, σ, β
˘

¯

“
1

2

˜

1 `

˜

1 ´ Φ

˜

1.96 ´
1.96 ´ Φ´1pβq

1 ` r˚pβq

¸¸

ď 1 ´ β ðñ 1 ´ β ě 0.8314 (32)

From equation (31), we can see thatE
“

RP pXsig|θ, σ, βq
ˇ

ˇl˚ ď Xsig ď u˚
‰

ă 1´β is a sufficient

condition for E
“

RP pXsig|θ, σ, βq
‰

ă 1 ´ β. Thus, in both cases – r˚ ě 1 and r˚ P p0, 1q – the

sufficient condition for the desired result is the same.

This sufficient condition is shown in two steps. In the first, I show that this inequality holds

even in the case where there is no selection such that all published results are replicated, and

thus X „ NpΘ,Σ2q. In the second, I show that this inequality remains true once we allow for

selection and truncation of the distribution due to conditioning on statistical significance.
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Lemma B3 states the first step and is of independent interest. It shows that even in the

optimistic scenario where original estimates are unbiased, there is no selective publication, and

all results are published and replicated, that the expected replication probability still falls below

intended power.

Lemma B3. Let published effects be distributed according to X|θ, σ „ Npθ, σ2q. Suppose

pptq “ 1 and rptq “ 1 for all t P R. Assume all results are included in the replication rate

calculation. Let power in replications is set according to the common power rule with intended

power 1 ´ β ě 0.8314. Then E
“

RP pX|θ, σ, β
˘‰

ă 1 ´ β.

Proof. Recall that RP px|θ, σ, βq is strictly concave with respect to x over the interval pl˚, u˚q,

where pl˚, u˚q “
`

p1´ r˚qθ, p1` r˚qθ
˘

when r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

; in both cases, the

mid-point of the interval is θ. We have that

E
“

RP
`

X|θ, σ, β
˘ˇ

ˇl˚ ď X ď u˚
‰

“ RP
`

E
“

X
ˇ

ˇ

ˇ
l˚ ď X ď u˚

‰ˇ

ˇθ, σ, β
˘

ă RP
`

θ
ˇ

ˇθ, σ, β
˘˘

“ 1 ´ β (33)

where the strict inequality follows from Jensen’s inequality and the fact that ErX|l˚ ď X ď

u˚s “ θ. The final equality is a property of the replication probability function shown in Lemma

B1. This is the sufficient condition required for the desired result.

It follows that E
“

RP pX|θ, σ, β
˘‰

ă 1´ β due to the inequalities in equation (28) (for when

r˚ ě 1q and equation (31) (for when r˚ P p0, 1q), which were derived under more general

conditions. Specifically, these inequalities were derived assuming that normal distribution may

be reweighted by gp¨q and truncated based on significance. This setting is a special case with

no selective publication (i.e. gptq “ 1 for all t) and no truncation.

The same conclusions hold when we introduce selective publication and replication (which

reweights the normal distribution) and condition on statistical significance (which truncates

the ‘insignificant’ regions of the density). Consider three cases. First, suppose that u˚ ď 1.96σ.

Then E
`

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

˘

“ 0 ă 1 ´ β because of truncation. Second, suppose

that l˚ ě 1.96σ. Then

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

l˚

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
gsig

`

x
σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

ď

ż u˚

l˚

RP
`

x|θ, σ, β
˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
1
σ
ϕ

´

x1´θ
σ

¯

dx1

ă RP
´

θ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

“ 1 ´ β (34)

Note that the distribution is invariant to the scale of gsigpq. Consider first the weak inequal-

ity. This follows because gsigpq is assumed to be weakly increasing over pl˚, u˚q. When it is a
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constant function over the interval, the equality holds. If gsigpx{σq ą 0 for some x P pl˚, u˚q

then the function redistributes weight to larger values of x. Since RP px|θ, σ, βq is strictly de-

creasing over positive values of x (Lemma A1.2), placing higher relative weight on lower values

implies that the weak inequality becomes strict. The strict inequality follows from Jensen’s

inequality, as shown in Lemma B3.
Finally, consider the case where l˚ ă 1.96σ ă u˚. Then

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

1.96σ

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
gsig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
gsig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
gsig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
gsig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`p1´ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

gsig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
gsig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1
` p1 ´ ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1

ă ωRP
´

θ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

` p1 ´ ωq.RP
´

2θ ´ 1.96σ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

ă 1 ´ β (35)

with

ω “

ş2θ´1.96σ

1.96σ
gsig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

şu˚

1.96σ
gsig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

(36)

The second row simply breaks up the integral. The third row rearranges the sum so that

the conditional expectation of the replication probability appears in both terms. The third line

follows because, as in the previous case, the gsig function redistributes weight to large values

of x and hence lower values of RP px|θ, σ, βq. In the last line, the first term uses the concavity

of RP px|θ, σ, βq over p1.96σ, 2θ ´ 1.96σq Ă pl˚, u˚q, Jensen’s inequality, and the fact that the

expected value of X over this interval is equal to θ. The second term follows because 2θ´1.96σ

is the maximum value the function can take because RP px|θ, σ, βq is strictly decreasing in

x over positive values. The final inequality follows because RP
`

θ
ˇ

ˇθ, σ, β
˘˘

“ 1 ´ β (Lemma

B1) and RP
`

2θ ´ 1.96σ
ˇ

ˇθ, σ, β
˘˘

ă 1 ´ β because 2θ ´ 1.96σ ą θ and the function is strictly

decreasing over positive values.

This covers all cases, proving the proposition.
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Proposition B2 (Regression to the Mean in Replications). Under Assumption 1, when θ ą 0,

we have that E
“

X˚
ˇ

ˇΘ˚ “ θ, SX “ 1, D “ 1
‰

ą θ “ E
“

X˚
r |Θ˚ “ θ,D “ 1

‰

. When θ ă 0, the

opposite inequality holds.

Proof. Without loss of generality, assume θ ą 0. We have E
“

X˚
r

ˇ

ˇΘ “ θ,D “ 1
‰

“ θ by

assumption. Next, note that

EX˚|Θ˚,S˚
X ,D

´

X˚
|Θ˚

“ θ, |X˚
{Σ˚

| ě 1.96, D “ 1
¯

“ EX|Θ,SX

´

X|Θ “ θ, |X{Σ| ě 1.96
¯

“ EΣ|Θ,SX

˜

EX|Θ,Σ,SX

´

X|Θ “ θ,Σ “ σ, |X{σ| ě 1.96
¯

¸

(37)

where the second line uses the fact that X is defined as X˚|D “ 1 and the last line uses the

Law of Iterated Expectations. We will prove EX|Θ,Σ,S˚
X

`

X|Θ “ θ,Σ “ σ, |X{σ| ě 1.96
˘

ą θ,

which implies that the expression in equation (37) is also greater than θ. Recall that X|θ, σ is

the effect size of published studies and follows a truncated normal distribution:

p
`

x
σ

˘

1
σ
ϕ

`

x´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

ş

p
`

x1

σ

˘

1
σ
ϕ

`

x1´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

dx1
(38)

Define X “ θ ` σZ. Then the density for the transformed random variable Z is

p
`

z ` θ
σ

˘

ϕ
`

z
˘

1
`

|z ` θ
σ

| ě 1.96
˘

ş

p
`

z1 ` θ
σ

˘

ϕ
`

z1
˘

1
`

|z ` θ
σ

| ě 1.96
˘

dz1
(39)

For notational convenience, define the following normalization constants:

η̄ “ PpX ď ´1.96σq `PpX ě 1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

`P

ˆ

Z ě 1.96 ´
θ

σ

˙

(40)

η1 “ PpX ď ´1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

(41)

η2 “ PpX ě 2θ ` 1.96σq “ P

ˆ

Z ě
θ

σ
` 1.96

˙

(42)

η3 “ Pp1.96σ ď X ď 2θ ´ 1.96σq “ P

ˆ

1.96 ´
θ

σ
ď Z ď

θ

σ
´ 1.96

˙

(43)
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Case 1.

Consider two cases. First, suppose θ P p0, 1.96σq. Conditional on pθ, σ) (where we suppress the

conditional notation on pθ, σq for clarity), the expected value of a published estimate conditional

of statistical significance is

EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

`
`

η̄ ´ η1 ´ η2
˘

EpX|1.96σ ď X ď 2θ ` 1.96σq

¸

(44)

First note that EpX|1.96σ ď X ď 2θ ` 1.96σq ą θ since we assume that θ P p0, 1.96σq and

psigpq ą 0. If η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě
`

η1 ` η2
˘

θ, it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. Consider the first expectation in this

expression:

EpX|X ď ´1.96σq “ E

´

θ ` σZ|Z ď ´1.96 ´
θ

σ

¯

“ θ ` σE
´

Z|Z ď ´1.96 ´
θ

σ

¯

(45)

Evaluating the expectation in the right-hand-side of equation (45) gives

E

´

Z|Z ď ´1.96´
θ

σ

¯

“
1

η1

ż ´1.96´ θ
σ

´8

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz “ ´
1

η1

ż ´1.96´ θ
σ

´8

psig

ˆ

z `
θ

σ

˙

ϕ1
pzqdz

“ ´
1

η1

«

psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

´ psigp´8qϕp´8q ´

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz

ff

“ ´
1

η1
psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

`
1

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz (46)

where the second equality uses ϕ1pzq “ ´zϕpzq; the third equality uses integration by parts;

and the final equality follows because psigp´8qϕp´8q “ 0 since psigpq is bounded between zero

and one. Substituting this into equation (45) gives

EpX|X ď ´1.96σq “ θ´
σ

η1
psigp´1.96qϕ

ˆ

´1.96´
θ

σ

˙

`
σ

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z`
θ

σ

˙

ϕpzqdz (47)

Next, note that

EpX|X ě 2θ ` 1.96σq “ θ ` σE
´

Z|Z ď
θ

σ
` 1.96

¯

(48)
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where

E

´

Z|Z ď
θ

σ
` 1.96

¯

“
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz ě
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z ´
θ

σ

˙

ϕpzqdz (49)

since psigpz` θ{σq ě psigpz´ θ{σq for all z P p1.96` θ{σ,8q because psigptq is weakly increasing

over t ą 1.96. For the right-hand-side of this equation, we can apply similar arguments used

to derive equation (46). Substituting the result into equation (48) gives

EpX|X ě 2θ ` 1.96σq ě θ `
σ

η2
psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

`
σ

η2

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz (50)

Equations (47) and (50) imply

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

ě pη1 ` η2qθ ` σ

«

psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

´ psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

ff

` σ

«

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz `

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz

ff

“ pη1 ` η2qθ (51)

In the second line, the second term in the sum equals zero because symmetry of psigpq and

ϕpq about zero implies that both terms in the brackets are equal. To see why the third term in

the sum equals zero, note that

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz “

ż 8

1.96` θ
σ

p1
sig

ˆ

´ u `
θ

σ

˙

ϕpuqdu “ ´

ż 8

1.96` θ
σ

p1
sig

ˆ

u ´
θ

σ

˙

ϕpuqdu

(52)

The first equality follows from both changing the order of the integral limits and applying

the substitution u “ ´x; it also uses the symmetry of ϕpq. The final equality holds because

symmetry of psigpq about zero implies that for any t ą 1.96, p1
sigptq “ ´p1

sigp´tq.

Case 2.

Consider the second case where θ ě 1.96σ. For a given pθ, σq, we have

EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq
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η3EpX|1.96σ ď X ď 2θ ´ 1.96σq `
`

η̄ ´ η1 ´ η2 ´ η3
˘

EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq

¸

ą
1

η̄

˜

θpη1 ` η2q `
`

η̄ ´ η1 ´ η2 ´ η3
˘

θ ` η3EpX|1.96σ ď X ď 2θ ´ 1.96σq

¸

(53)

The inequality follows from two facts. First, the inequality proved in the first case:

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě pη1 ` η2qθ. Second, the expectation

in the third term of the sum satisfies EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq ą θ because

θ ě 1.96σ ðñ 2θ ´ 1.96σ ě θ and we assume that psigpq ą 0.

It remains to show that EpX|1.96σ ď X ď 2θ ´ 1.96σq ě θ. Then it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. First, note that

EpX|1.96σ ď X ď 2θ ´ 1.96σq “ θ ` σE

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´
θ

σ
ď Z ď ´1.96 `

θ

σ

˙

(54)

It is therefore sufficient to show that E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´ θ
σ

ď Z ď ´1.96 ` θ
σ

˙

ě 0. Writing out

the expectation in full gives

E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96´
θ

σ
ď Z ď ´1.96`

θ

σ

˙

“
1

η3

˜

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz`

ż θ
σ

´1.96

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz

¸

“
1

η3

˜

ż θ
σ

´1.96

0

z

„

psig

ˆ

z `
θ

σ

˙

´ psig

ˆ

´ z `
θ

σ

˙ȷ

ϕpzqdz

¸

ě 0 (55)

The second equality follows because

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż 1.96´ θ
σ

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż θ
σ

´1.96

0

upsig

ˆ

´u`
θ

σ

˙

ϕpuqdu

(56)

which uses the substitution u “ ´x and the symmetry of ϕpq. The weak inequality in equation

(55) follows because psigpq is assumed to be weakly increasing over positive values. Thus,

z ´ θ{σ ą ´z ` θ{σ for all z P p0, θ{σ ´ 1.96q implies psig
`

z ` θ{σ
˘

´ psig
`

´ z ` θσ
˘

ě 0.

This covers all cases and proves the proposition.

Proposition B3. Under the fractional power rule which sets the replication standard error

according to σrpX, β, ψq “
ψ¨|X|

1.96´Φ´1pβq
with ψ ă 1, the expected replication rate can range

between 0.025 and 1 ´ Φr1.96 ´ 1
ψ

`

1.96 ´ Φ´1pβq
˘

s ą 1 ´ β.
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Proof. Under the fractional power rule, the expected replication rate conditional on pθ, σq is

given by

ErRP pX,Θ, σrpX, β, ψq|Θ “ θ,Σ “ σs

“

ż
«

1 ´ Φ
´

1.96 ´ signpxq
θ

ψ ¨ |x|

`

1.96 ´ Φ´1
pβq

˘

¯

ff

1

σ
ϕ

ˆ

x ´ θ

σ

˙

dx (57)

If θ “ 0, then this equals 0.025. Next, suppose wlog that θ ą 0 and consider the case where

σ Ñ 0 such that power in original studies approaches one. See that the integrand is bounded

above by one and converges pointwise as σ Ñ 0 to

1 ´ Φ
´

1.96 ´ signpxq
θ

ψ ¨ |x|

`

1.96 ´ Φ´1
pβq

˘

¯

1tx “ θu (58)

since the normal distribution converges to a degenerate distribution when the variance goes to

zero. Thus, by the dominated convergence theorem (and the fact that θ ą 0), we have that

lim
σÑ0

ErRP pX,Θ, σrpX, β, ψq|Θ “ θ,Σ “ σs “ 1 ´ Φ
´

1.96 ´
1

ψ

`

1.96 ´ Φ´1
pβq

˘

¯

(59)

When ψ “ 1, this equals 1 ´ β. Since equation (59) is strictly decreasing in ψ, it follows

that equation (59) is strictly above 1 ´ β when ψ ă 1.

This shows that the expected replication of an individual study can range between 0.025

and 1´Φr1.96´ 1
ψ

`

1.96´Φ´1pβq
˘

s ą 1´ β. Integrating over the distribution of latent studies

gives the desired result.

Proposition B4. For any function gpX,Σ, Xr, βq,E
“

gpX,Σ, Xr, βq|D “ 1, R “ 1, SX “ 1
‰

does not depend on pinsigpq.

Proof. We can write E
“

gpX,Σ, Xr, βq|D “ 1, R “ 1, SX “ 1
‰

as

ż

gpx, σ, xr, βqf
X˚,Σ˚,Θ˚,Xr |D,R,S˚

X

´

x, σ, θ, xr
ˇ

ˇD “ 1, R “ 1, SX˚ “ 1
¯

dxdσdθdxr

“

ż

x,σ,θ

˜

ż

xr

gpx, σ, xr, βqfXr |X˚,Σ˚,Θ˚

´

xr|θ, σrpx, σ, βq

¯

dxr

¸

f
X˚,Σ˚,Θ˚|D,R,S˚

X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

dxdσdθ

(60)

The equality uses the Law of Iterated Expectations and

fXr|X˚,Σ˚,Θ˚,D,R,S˚
X

`

xr|θ, σrpx, σ, βq
˘

“ fXr|X˚,Σ˚,Θ˚

`

xr|θ, σrpx, σ, βq
˘

. Replication esti-

mates are not subject to selective publication, which implies this is a normal density that
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does not depend on ppq. Hence, the term in parentheses can only be affected by ppq indirectly

through fX˚,Σ˚,Θ˚|D,R,S˚
X
, which is the joint distribution of original studies conditional on being

published, chosen for replication, and statistically significant at the 5% level. However, this

distribution does not depend on the probability of publishing insignificant findings. To see

this, apply Bayes rule twice to get

fX˚,Σ˚,Θ˚|D,R,S˚
X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

“

P

´

D “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ,R “ 1, S˚
X “ 1

¯

P

´

D “ 1
ˇ

ˇR “ 1, S˚
X “ 1

¯ ˆ

P

´

R “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ, S˚
X “ 1

¯

P

´

R “ 1
ˇ

ˇS˚
X “ 1

¯

ˆfX˚,Θ,Σ˚|S˚
X

´

x, θ, σ
ˇ

ˇS˚
X “ 1

¯

“
psigpx{σq

E
`

psigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨
rsigpx{σq

E
`

rsigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨ fX˚,Σ˚,Θ˚|S˚
X

´

θ, x, σ
ˇ

ˇS˚
X “ 1

¯

(61)

In the final line, the first factor in the product includes only psigpq; the denominator does not

condition on R because replication selection is assumed to be random for significant findings.

The second factor equals one because replication selection for significant results is assumed

to be random. The final factor in the product is the density of latent studies conditional on

significance, which is not affected by selective publication.

C. Replication Rate Gap Decomposition

This appendix derives a decomposition that measures the relative importance of non-linearities

as compared to distortions from selection on significance and issues that arise when original

estimates have. It then applies this decomposition to economics experiments and psychology.

C.1. Derivation

The decomposition is based on the expected replication rate under two regimes, which differ

according to which studies are published and chosen for replication.

1. Actual: this regime is based on the actual expected replication rate, that is, where

the studies chosen for replication depends both on the degree of selective publication and

how replicators actually choose which results to replication e.g. only choosing statistically

significant results to replicate.

2. Counterfactual: this regime considers a counterfactual scenario where all results are

published and replication is random. This implies the distribution of published, replicated

studies coincides with the distribution of latent studies.
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Let the subscript ‘Ac’ denote the actual regime and ‘Cf’ the counterfactual regime. Formally,

the expectation operators under both regimes are defined by:

EAc

“

RP pX,Θ, σrpX,βqq
‰

“

ż

RP px, θ, σrpx, βqqfX˚,Θ˚|D,R,S˚
X

px, θ|D “ 1, R “ 1, S˚
X “ 1qdxdθ (62)

ECf

“

RP pX,Θ, σrpX,βqq
‰

“

ż

RP px, θ, σrpx, βqqfX˚,Θ˚ px, θqdxdθ (63)

See that the expressions differ based on the distribution of studies over which we integrate.

Under the ‘actual’ regime, we integrate over the distribution of latent studies conditional on

being selected for publication pD “ 1q and replication pR “ 1q. By contrast, for the ‘counter-

factual’ regime, we integrate over the unconditional distribution of latent studies (since there

is no distortive selection in this regime).

Using these expressions, we have the following decomposition:

p1 ´ βq ´EAc

“

RP pX,Θ, σrpX,βqq
‰

looooooooooooooooooooooomooooooooooooooooooooooon

replication rate gap

“ p1 ´ βq ´ECf

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

(i) concavity gap

`PAc
`

X ă 0
˘

´

EAc

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

´EAc
“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ă 0
‰

¯

looooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(ii) wrong-sign gap

`ECf

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

´EAc
“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

(iii) selection-on-significance gap

(64)

Proof. Write the expected replication probability under model 1 as

EAc

“

RP pX,Θ, σrpX,βqq
‰

“ EAc

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

`PAc

`

X ă 0
¯

`

EAc

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ă 0
‰

¯

´EAc

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

¯

(65)

To arrive at equation (64), substitute equation (65) into the replication rate gap; add and

subtract ECf

“

RP pX,Θ, σrpX, βqq
ˇ

ˇX ě 0
‰

; and rearrange the terms.

Equation (64) states that we can express the difference between the nominal power target

1 ´ β and the expected replication rate – i.e. the replication rate gap – into the sum of three

components: the concavity gap; the wrong-sign gap; and the selection-on-significance gap.

The concavity gap measures how far we move from the nominal target 1 ´ β once we

account for the concavity of the RP p¨q function. That is, how much does the replication rate

decrease once we taken the expectation of the function (rather than evaluation the function

at its expectation)? Note that this portion of the gap isolates the impact of the concavity

of the function by abstracting from the two other issues. First, it abstracts from distortions

due to selection-on-significance since it is based on the counterfactual regime with no selection.
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Second, it abstracts from the issue original estimate having the wrong sign by conditioning of

X ą 0.

The wrong-sign gap examines the difference in the expected replication rate between esti-

mates with the correct sign X ą 0 and the incorrect sign X ă 0. In that latter case, replication

probabilities are very low.

Finally, the selection on significance gap examines the difference in the expected replication

rate between the actual regime, which may be distorted by publication and replication selection,

and the counterfactual regime, which is not. Like the concavity gap, it abstracts away from

the issue of original estimates with the wrong sign.

C.2. Estimation

The decomposition can be calculated for economics and psychology using the model estimates

in Table 1 in the main text. I do not calculate the decomposition for social science experiments

because the fractional power rule does not provide a nominal power target, and hence there is

no gap that can be decomposed.

Expectations are calculated by simulation. For example, to calculate the expected replica-

tion rate in the counterfactual regime, we randomly draw from the estimated distribution of

latent true effects and standard errors in Table 1 and then, without censoring any draws due to

selective publication or replication, we calculate their average replication probability. Expecta-

tions in the actual regime are calculated by drawing from the same latent distribution of true

effects and standard errors, but in this case, some studies are now censored due to selective

publication and replication, as determined by the estimated selection parameters βp in Table

1. This is a similar procedure as in Section 4 in the main text, except that we condition here

on the sign of original estimates for the decomposition.

Note that the distribution of latent studies is the same across both regimes, but the key

difference it that studies are subject to selection in the ‘actual’ regime while they are not in

the ‘counterfactual’ regime.

C.3. Results

Table C1 presents the results. Panel A reproduces the results in the main text and Panel

B presents the decomposition results. The empirical results for the decomposition show that

failing to account for the concavity of the replication power function explains the overwhelming

majority of the explained replication rate gap in both economics and psychology. The selection-

on-significance gap in small, explaining only 3.1% of the gap in economics, while actually

decreasing the expected replication rate in psychology.
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Table C1 – Replication Rate Predictions and Decomposition Results

Economics experiments Psychology Social sciences
A. Replication rate predictions
Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Predicted replication rate 0.600 0.545 0.543

B. Decomposition of explained gap
Predicted replication rate gap 0.320 (100%) 0.375 (100%) –

Concavity gap 0.292 (91.16%) 0.364 (97.16%) –
Wrong-sign gap 0.018 (5.72%) 0.030 (8.03%) –
Selection-on-significance gap 0.010 (3.12%) -0.019 (-5.18%) –

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as the share of
original estimate whose replications have statistically significant findings of the same sign. Figures in the first
row report the mean intended power reported in both applications. The second row shows observed replication
rates. The third row reports the predicted replication rate in equation (9) calculated using parameter estimates
Table 1. In social sciences, power is set to detect three-quarters of the original effect size with 90% power. This
approach does not have a fixed nominal target for the replication rate.

The small to negative impact of selection on significance on the replication rate is perhaps

surprising. This is because the selection gap is the net outcome of two offsetting effects.

First, conditioning on significance leads to exaggerated estimates and hence lower replication

rates conditional on any given true effect θ. However, selection on significance also changes

the distribution of true effects that make it into the published literature. In particular, the

average true effect size increases with selection since larger true effects are more likely to

produce statistically significant results. Moreover, larger true effects have higher replication

probabilities as compared with smaller true effects, leading to an increase in the probability of

replication. These two opposing forces lead to a small decline in replication rates in economics

and a slight increase in replication rates in psychology. In the subsections below, I provide

additional evidence for the intuition underpinning these results.

Concavity gap.—Figure C1 presents normal simulations showing that the non-linearity gap

is largest for standardized true effects ω ” θ{σ which are close to 0, and remains above 0.2 for

ω ď 1. It decreases monotonically as the true effect size ω increases and approaches zero in the

limit (Lemma A1.5 in Appendix A). It follows that the size of the non-linearity gap depends

on the distribution of ω. The first row of graphs in Figure C2 plot the distribution of latent

studies (conditional on having the ‘correct’ sign to match the decomposition). We see that a

high fraction of latent studies have ω ă 1, which explains why the non-linearity gap explains

such a large portion of the replication rate gap.
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Figure C1. Replication Rate Gap Decomposition: Monte Carlo Simulations

Notes: Plots are based on simulating studies from an Npω, 1q distribution, for different values of ω. Replication
estimates are drawn from a Npω, σrpx, βq2q, where σrpx, βq is set based on the common power rule to detect
the original effect x with 1 ´ β “ 0.92 intended power. The non-linearity gap and regression-to-the-mean gap
are based on equation (64) and calculated using Monte Carlo methods.

Wrong-sign gap.—Random sampling variation means that original estimates will occasion-

ally have the ‘wrong’ sign. When this occurs, the replication probability is bounded above by

0.025. The extent to which this issue contributes to low replication rates therefore depends on

the share of studies that have the wrong sign among significant studies. Since the probability

of an original study having the wrong sign and being statistically significant is fairly low (3%

in economics and 5% in psychology), the contribution of the wrong-sign gap is relatively small.
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Figure C2. Distribution of Normalized True Effects: Latent Studies and Significant Studies

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Densities are based on simulated draws from the estimated distribution of latent studies
in Table 1 in the main text. Dashed vertical lines show the median of the distribution.

Selection-on-significance gap.—The selection-on-significance gap is 1% in economics and

slightly negative for psychology (i.e. conditioning on statistical significance increases the repli-

cation rate compared to when there is no conditioning). The sign of this gap is ambiguous

because of two opposing effects from conditioning on statistical significance, as discussed above.

To better understand these two effects, consider the figures in Table C2 which are based on the

estimated empirical models. For the first effect, note that conditioning on significant findings

increases mean bias in both applications.24 This makes replication more difficult for any given

true effect and standard error. For the second effect, note that conditioning also tends to select

studies with larger standardized true effects ω, which have higher replication probabilities.25

24Note that bias is positive for latent studies because these statistics condition on original estimates X˚ to
have the same sign as true effects.

25The impact of conditioning on the full distribution of ω can be seen in Figure C2.
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Table C2 – True Effect Sizes and Bias For Studies with the ‘Correct’ Sign

Economics experiments Psychology experiments
Latent Published & significant Latent Published & significant

Mean standardized bias 1.522 3.352 1.323 2.950
Mean standardized true effect 1.415 2.915 1.084 2.367

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Figures are based on simulated draws from the estimated distribution of latent studies
from Table 1 in the main text. The mean of the standardized true effect is equal to ErΩ˚|S˚

X , X
˚ ą 0, Ds.

Mean standardized bias is equal to ErX˚{Σ˚ ´Ω˚|S˚
X , X

˚ ą 0, Ds. ‘Published & significant studies’ set S˚
X “ 1

and D “ 1. ‘Latent studies’ do not condition on significance or publication.

Higher replication probabilities arise because for more highly powered studies: non-linearity

effects are less severe (Panel 1, Figure C1); and bias is smaller (Panel 3, Figure C1). Bias is

smaller because censoring insignificant original estimates has little ‘bite’ when the true effect

is very large, since the probability of drawing an insignificant estimate is very small.

D. Alternative Measures of Selective Publication

Proposition 1 shows that the replication rate is unresponsive to the most salient form of selective

publication. For journals and policymakers seeking to change current norms, this highlights

the need for more informative measures. In this section, I conduct policy simulations using the

estimated model to show how three alternative measures respond to changes in the selective

publication of null results:

1. Replication CI: This measure counts a replication as ‘successful’ if its 95% confidence

interval covers the original estimate: 1
“

X P
`

Xr ´ 1.96Σr, Xr ` 1.96Σr

˘‰˘

.

2. Meta-analysis: The standard criterion of replication with the same sign and significance

is applied to a fixed-effect meta-analytic estimate combining the original and replication

estimate (uncorrected for selective publication): 1
“

|Xm| ě 1.96Σm, signpXmq “ signpXq
‰

where Xm and Σm are the meta-analytic estimate and standard error, respectively.26

3. Prediction interval: Original and replication estimates are counted as ‘consistent’ under

this approach if their difference is not statistically different from zero at the 5% level

(Patil et al., 2016). This is equivalent to estimating a 95% ‘prediction interval’ for the

26The fixed-effects meta-analytic estimate is a weighted average of original and replication estimates: Xm “
`

ωoX`ωrXr

˘

{pωo`ωrq, where the weights are equal to the precision of each estimate i.e. pωo, ωrq “ pΣ´2,Σ´2q.
These weights minimize the mean-squared error of Xm (Laird and Mosteller, 1990). The variance of this
estimator is given by Σ2

m “ 1{pωo ` ωrq.
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original estimate and then determining if it covers the replication estimate: 1
“

Xr P
`

X ´ 1.96
a

Σ2 ` Σ2
r, X ` 1.96

a

Σ2 ` Σ2
r

˘‰˘

.27

These alternative replication measures are frequently reported in large-scale replication

studies (Open Science Collaboration, 2015; Camerer et al., 2016, 2018). In simulations, I

calculate these measures over significant and insignificant published results, since conditioning

on statistical significance makes them unresponsive to selective publication on null results

(Proposition B4).

Simulations assume that all results significant at the 5% level are published, and that results

insignificant at the 5% level are published with probability βp. I then calculate how the various

measures change with βp to see how well they capture changes in selective publication (e.g.

because of policy changes that reduce selective publication). Policymakers’ successful efforts to

increase the probability of publishing null results lead to an increase in the policy variable, βp.

Note that while model estimation assumes multiple cutoffs, policy simulations are performed

assuming policymakers influence publication probabilities at a single cutoff (1.96) for simplicity

(i.e. in the policy simulations I set βp “ βp1 “ βp2 and βp3 “ 1 in social science).

Figure D1 shows the results. In line with Proposition 1, the replication rate is completely

unresponsive to changes in the probability of publishing null results, making it a poor measure

to evaluate efforts to reduce selective publication. Turning to alternative measures, note that

the replication CI and meta-analysis measures actually worsen when more null results are

published (βp Ñ 1). This is because less selective publication leads to more small effects

being selected for replication, which have relatively low replication probabilities under these

approaches. By contrast, the prediction interval measure is low when selective publication

is high, and approaches close to 95% as the probability of publishing null results approach

one.28 The prediction interval measure performs well because it explicitly accounts for the

decline in original power as more small effects are selected for replication. Noisy low-powered

original studies contain limited information about true effects, which implies that a large range

of replication estimates are statistically consistent with them.

Overall, for the purpose of evaluating efforts to reduce selective publication, these results

suggest that calculating the prediction interval measure over a random sample of all published

results could provide a useful alternative to the replication rate.

27This approach assumes that original and replication estimates share the same true effect and are statistically
independent. For more details, see the Supplementary Materials for Patil et al. (2016).

28When βp “ 1, the prediction interval measure is slightly higher than 95% in all applications. This is
because it assumes that the original estimate X and the replication estimate Xr are uncorrelated. In practice,
the replication standard error is a function of the original estimate via the common power rule, which generates
some correlation between X and Xr.
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Figure D1. Policy Simulations: Alternative Measures of Replication and Selective Publica-
tion

Notes: Details of each measure are provided in the main text. All measures except for the replication rate
are calculated over significant and insignificant published results. Simulations use model estimates of the
latent distribution of studies from Table 1 and set different levels of selective publication βp. The first column
reproduces replication rate predictions in Table 2.



53

E. Likelihood and Robustness to Alternative Parametric Specifications

This appendix provides details on the empirical model used in the applications. The first sub-

section provides details on the likelihood; the second discusses sign normalization in estimation;

and the third presents robustness results for alternative parametric specifications.

Likelihood.—In each empirical application, the model is estimated via maximum likelihood.

The marginal likelihood of published estimates and standard errors, pX,Σq, is given by

fX,Σpx, σq “

p
`

x
σ

˘

r
`

x
σ

˘ ş

θ
1
σ
ϕ

´

x´θ
σ

¯

dFΘpθ|κθ, λθq.gΣpσ|κσ, λσq

ş

x1

ş

σ1 p
`

x1

σ1 qr
`

x1

σ1

˘ ş

θ
1
σ1ϕ

´

x1´θ
σ1

¯

dFΘpθ|κθ, λθqgΣpσ1|κσ, λσqdx1dσ1

(66)

where ϕpq is the standard normal density, FΘ is the distribution function for (normalized)

latent true effects |Θ˚|, and gΣ is the density function for latent standard errors Σ˚. Assuming

independence across studies, the log-likelihood of the data txi, σiui is ℓpκθ, λθ, κσ, λσ, βpq “
ř

i log fX,Σpxi, σiq, where βp is a vector of the parameters of the publication probability function.

Sign Normalization.—Following Andrews and Kasy (2019)29, we normalize initial estimates

to be positive and conduct estimation based on W ” |X| and Σ using the marginal likelihood

fW,Σpw, σq “ fX,Σpw, σq ` fX,Σp´w, σq.

Robustness to Alternative Parametric Specifications.—The model-based replication rate pre-

dictions in Table 2 are based on the maximum likelihood model estimates in Table 1. These

model estimates are based on certain parametric assumptions about the distribution of latent

(normalized) true effects |Θ˚| and latent standard error Σ˚, namely, that both follow gamma

distributions.

Table E1 presents replication rate predictions using three alternative sets of parametric

assumptions. For reference, the results of the baseline gamma-gamma model from the main

text are reprinted in the first row under ‘model predictions’. The other models consider different

combinations of gamma and log-normal assumptions for the distribution of |Θ˚| and Σ˚. For

example, (Gamma, Log-normal) refers to a model where |Θ˚| follows a gamma distribution and

Σ˚ follows a log-normal distribution.

Overall, the accuracy of the replication rate predictions is robust to alternative parametric

specifications. For economics experiments and psychology, the replication rate predictions are

very similar across all models. For social sciences, the replication rate predictions are somewhat

higher in models where we assume that the latent distribution of true effects follows a gamma

29Andrews and Kasy (2019) analyze the same three application in their paper: Camerer et al. (2016) and
Open Science Collaboration (2015) in their main paper and Camerer et al. (2018) in the Online Appendix.
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distribution (62% v. 54%). However, the accuracy of the models, as measured by the distance

of their predictions from the observed replication rate, is similar (5 percentage points vs. 3

percentage points).

Econoimcs experiments Psychology Social science

Nominal power (intended target) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571

Model predictions
Baseline model: (Gamma, Gamma) 0.600 0.545 0.543
(Log-normal, Gamma) 0.602 0.547 0.621
(Gamma, Log-normal) 0.606 0.543 0.542
(Log-normal, Log-normal) 0.607 0.545 0.623

Table E1 – Robustness: Replication Rate Predictions

Notes: Model predictions are based on models with different parametric assumptions. Each model is denoted
by a tuple with two distributions. The first refers to the distribution of normalized latent true effects |Θ˚| and
the second to the distortion of latent standard errors Σ˚. For example, (Gamma, Log-normal) refers to a model
where |Θ˚| follows a gamma distribution and Σ˚ follows a log-normal distribution.

F. Replication Selection in Empirical Applications

Replication selection is a multi-step mechanism that first selects studies, and then selects results

within those studies to replicate (since studies typically report multiple results). It consists of

three steps:

1. Eligibility: define the set of eligible studies (e.g. journals, time-frame, study designs).

2. Study selection: on the set of eligible studies, a mechanism that select which studies

will be included in the replication study.

3. Within-study replication selection: for selected studies, a mechanism for selecting

which result(s) to replicate.

These three features of the replication selection mechanism influence the interpretation of

the selection parameters pβp1, βp2, βp3q.

Economics experiments.—Consider these three steps in Camerer et al. (2016):

1. Eligibility: Between-study laboratory experiments in American Economic Review and

Quarterly Journal of Economics published between 2011 and 2014.



55

2. Study selection: Camerer et al. (2016) select for replication all eligible studies that

had ‘at least one significant between subject treatment effect that was referred to as

statistically significant in the paper.’ Andrews and Kasy (2019) review eligible studies

and conclude that no studies were excluded by this restriction. Thus, the complete set of

eligible studies was selected for replication.

3. Within-study replication selection: the most important statistically significant result

within a study, as emphasized by the authors, was chosen for replication. Further details

are in the supplementary materials in Camerer et al. (2016). Of the 18 replication studies,

16 were significant at the 5% level and two had p-values slightly above 0.05 but were

treated as ‘positive’ results for replication and included in the replication rate calculation.

I assume replication selection is random with respect to the t-ratio for results whose

p-values are below or only slightly above 0.05. This implies that βp2 measures the relative

probability of being published and chosen for replication for a result whose p-value is slightly

above 0.05, compared to if it were strictly below 0.05. Overall, the empirical results are

valid for the population of ‘most important’ significant (or ‘almost significant’) results, as

emphasized by authors, in experimental economics papers published in top economics journals

between 2011 and 2014.

Psychology.—Next, consider replication selection in Open Science Collaboration (2015):

1. Eligibility: Studies published in 2008 in one of the following journals: Psychological

Science, Journal of Personality and Social Psychology, and Journal of Experimental Psy-

chology: Learning, Memory, and Cognition.

2. Study selection: Open Science Collaboration (2015) write: ‘The first replication teams

could select from a pool of the first 20 articles from each journal, starting with the first

article published in the first 2008 issue. Project coordinators facilitated matching articles

with replication teams by interests and expertise until the remaining articles were difficult

to match. If there were still interested teams, then another 10 articles from one or more

of the three journals were made available from the sampling frame.’ Importantly, the

most common reason why an article was not matched was due to feasibility constraints

(e.g. time, resources, instrumentation, dependence on historical events, or hard-to-access

samples).

3. Within-study replication selection: the last experiment reported in each article was

chosen for replication. Open Science Collaboration (2015) write that, ‘Deviations from
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selecting the last experiment were made occasionally on the basis of feasibility or recom-

mendations of the original authors.’ A small number of results had p-values just above

0.05 but were treated as ‘positive’ results for replication, as in Camerer et al. (2016).

This selection mechanism implies that the empirical results are valid for the distribution of

last experiments in the set of eligible journals. Since neither studies nor results were selected

based on statistical significance, it is reasonable to treat the ‘last experiment’ rule as effectively

random. In this case, we can interpret the results are being valid for all results in the eligible

set of journals.

Social science experiments.—Finally, consider replication selection in Camerer et al. (2018):

1. Eligibility: Experimental studies in the social sciences published in Nature or Science

between 2010 and 2015.

2. Study selection: Camerer et al. (2018) include all studies that: ‘(1) test for an experi-

mental treatment effect between or within subjects, (2) test at least one clear hypothesis

with a statistically significant finding, and (3) were performed on students or other ac-

cessible subject pools. Twenty-one studies were identified to meet these criteria.’

3. Within-study replication selection: Camerer et al. (2018) write, ‘We used the fol-

lowing three criteria in descending order to determine which treatment effect to replicate

within each of these 21 papers: (a) select the first study reporting a significant treat-

ment effect for papers reporting more than one study, (b) from that study, select the

statistically significant result identified in the original study as the most important result

among all within- and between-subject treatment comparisons, and (c) if there was more

than one equally central result, randomly select one of them for replication.’ All results

selected for replication had p-values strictly below 0.05.

This selection mechanism implies that the empirical results are valid for the population

of statistically significant between- or within-subject treatment comparisons in experimental

social science, which were identified by authors as the most ‘important’ and published in

Nature or Science between 2010 and 2015.

G. Predicted Replication Rates Under Alternative Power Calculations

This appendix presents several extensions to the main empirical results on predicting repli-

cation rates in experimental economics, psychology and social science. The first extension
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allows for variation in the application of the common power rule around mean intended power.

Results are similar to those in the main text, which assume no variability in the application

of the common power rule. The second extension generates replication rate predictions under

the rule of setting replication power equal to original power. This delivers lower replication

rates than the common power rule.

Alternative power calculation rules.—Consider first the rule used for calculating replication

power in the main text, and then two additional approaches. For concreteness, suppose we

want to calculate the replication standard error for a simulated original study pxsim, σsim, θsimq.

1. Common power rule (mean): This is the rule reported in the results in the main

text. It assumes no variability in the application of the common power rule, such that all

replications have mean intended power 1 ´ β. This rule implies

σsimr pxsim, βq “
|xsim|

1.96 ´ Φ´1pβq
(67)

2. Common power rule (realized): Intended power for individual replications varied

around mean intended power for at least two reasons. First, replication teams were

instructed to meet minimum levels of statistical power, and encouraged to obtain higher

power if feasible. Second, a number of replication in Open Science Collaboration (2015)

did not meet this requirement. Figure G1 shows the distribution of realized intended

power in replications for experimental economics and psychology. Realized intended power

is right-skewed for psychology. In experimental economics and social science, realized

intended power is distributed more tightly around mean.

To capture variability in the application of the common power rule, take a random draw

from the empirical distribution of |x|{σr and denote it 1.96 ´ pβn. Then realized intended

power for simulated study pxsim, σsim, θsimq is equal to

σsimr pxsim, pβnq “
|xsim|

1.96 ´ Φ´1ppβnq
(68)

3. Same power: Set replication power equal to the power in the original study:

σsimr pσsimq “ σsim (69)

This rule has been proposed as a straightforward, intuitive approach for designing repli-

cation studies. In a review of replication studies by Anderson and Maxwell (2017), 19 of
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108 studies used this approach.

Figure G1. Realized Intended Power

Notes: Data are from Camerer et al. (2016), Open Science Collaboration (2015), and Camerer et al. (2018),
respectively. Realized intended power is defined as 1´Φp1.96´ψ ¨ x

σr
q with ψ “ 1 in economics and psychology

and ψ “ 3{4 in social science. The horizontal dashed line is reported mean power in each application. In
economics and psychology, this is 92% to detect the original effect size. In social science, this is 90% to detect
three quarters of the effect size.

Results.—Table G1 presents the results for all three applications. Panel A shows that
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allowing intended power to vary across replications (‘Realized power’) yields similar replication

rate prediction to assuming all replications have intended power equal to the report mean (‘92%

on X’). In fact, in all three applications, the accuracy improves very slightly under the realized

power rule. The biggest differences is in psychology, because the realized power rule accounts

for the fact that the distribution of intended power is right skewed.

Panel B examines the proposed rule of setting replication power equal to original power. In

all three cases, the expected replication rate is lower than under the common power rule.

Table G1 – Replication Rate Predictions Under Alternative Replication Power Rules

Economics Psychology Social science
A. Replication rate predictions

Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Mean power 0.600 0.545 0.543
Realized power 0.615 0.522 0.555

B. Alternative rule
Same power 0.550 0.486 0.494

Notes: Economics experiments refer to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015), and social science experiments to Camerer et al. (2018). The replication rate is defined as
the share of original estimate whose replications have statistically significant findings of the same sign. Figures
in the first row are observed outcomes from large-scale replication studies. Remaining rows report predicted
replication rates using parameter estimates Table 1 in the main text and assuming different rules for calculating
replication power.

H. Relative Effect Size Predictions

The main focus of this article is the binary measure of replication based on the statistical

significance criterion. This is because of its status as the primary replication indicator in the

large-scale replication studies.30 However, complementary measures are frequently presented

alongside the replication rate. Perhaps the most common is the relative effect size, a continuous

measure of replication defined as the ratio of replication effect size and original effect size.

Relative effect sizes typically range between 0.35 and 0.7. Below, I include a brief theoretical

discussion of the relative effect size and then present predictions of this measure using the

estimated models.

Theoretical discussion.—The relative effect size for individual studies may be informative

about biases affecting original studies, especially when original studies are well-powered. How-

ever, as an aggregate measure of reproducibility, the relative effect size measure may be subject

30Power calculations in replications are themselves typically designed to measure a binary notation of repli-
cation ‘success’ or ‘failure’.
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to similar issues to the replication rate, at least in the case where it is defined exclusively over

significant findings.

First, if the relative effect size is defined over significant original results, then it will be

largely uninformative about the ‘file-drawer’ problem (Proposition B4).31 Second, non-random

sampling of significant results for replication mechanically induces inflationary bias in original

estimates and regression to the mean in replication estimates, such that relative effect sizes are

below one in expectation. Thus, similar to the replication rate, it has no natural benchmark

against which to judge deviations, making it challenging to interpret. Relatedly, the average

relative effect size is also very sensitive to power in original studies, which is unobserved. Figure

H1 provides an illustration with intended power set to 0.9, which shows that the expected

relative effect size for significant results is increasing in the power of original studies, and

approaches one only as statistical power approaches 100%.

Figure H1. Expected Relative Effect Size of Significant Original Studies and Statistical
Power

Notes: Illustration for the relationship between original power and the expected relative effect size of significant
findings under the common power rule are both functions of ω “ θ{σ (normalized to be positive). Original
power to obtain a significant effect with the same sign as the true effect is equal to 1´Φp1.96´ωq. The expected

relative effect size is calculated by taking 106 draws of Z from Npω, 1q and then calculating 1
Msig

řMsig

i“1 ρsigi,r {ρsigi ,

where ρ “ tanh z denotes the Pearson correlation coefficient obtained by transforming the Fisher-transformed
correlation coefficient (Fisher, 1915); and Msig is the number of significant latent studies. The superscript
sig reflects the fact that only statistically significant original results at the 5% level and their replications are
included in the calculation. Replication estimates zi,r are drawn from an Npω, σr,ipzi, βq2q distribution. The
replication standard error is calculated using the common power rule to detect original effect sizes with 90%
power (i.e. 1 ´ β “ 0.9), which is given by σrpzi, βq “ |zi|{r1.96 ´ Φ´1pβqs “ |zi|{3.242.

31Defining it over null results may present its own difficulties. For a perfectly measured null effect, the
denominator in the statistic is equal to zero and the statistic is not well defined. On the other hand, if it is
close but not equal to zero, then the statistic is highly sensitive to the precision of replication estimates; this
raises questions about how one should set replication power when replicating a null effect.
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Empirical results.—The estimated models in Table 1 in the main text can be used to gener-

ate predictions of the average relative effect sizes. To procedure for simulating replications

is identical to the procedure outlined in the main text for the replication rate case. Let

txi, σi, xr,i, σr,iu
Msig

i“1 be the set of simulated original studies that are published and significant,

and their corresponding replication results; Msig is the size of the set. The predicted relative

effect size is equal to

1

Msig

Msig
ÿ

i“1

ρsigi,r

ρsigi
(70)

where ρ “ tanhx denotes the Pearson correlation coefficient which is obtained by transforming

the Fisher-transformed correlation coefficient (Fisher, 1915). I also present results for the

median relative effect size. Results are presented in Table H1. The predicted average relative

effect size is relatively close to observed average relative effect size in economics, somewhat

further off in social science, and quite far off in psychology. In each case, the predicted average

relative effect size is optimistic compared to the observed value. In economics and psychology,

the difference in predicted and observed relative effect sizes is not statistically different from

zero, while in psychology it is. Predictions for median relative effect sizes show qualitatively

similar results.

Table H1 – Average Relative Effect Size Predictions

Economics Psychology Social Sciences

Observed relative effect size (mean) 0.657 0.374 0.443
Predicted relative effect size (mean) 0.703 0.637 0.533

(0.135) (0.060) (0.141)

Observed relative effect size (median) 0.691 0.292 0.527
Predicted relative effect size (median) 0.747 0.674 0.595

(0.129) (0.063) (0.240)

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social science experiments to Camerer et al. (2018). Observed relative effect sizes are
based on data from large-scale replication studies. Predicted average relative effect sizes are calculated using
equation (70) and the procedure outlined in the text. Standard errors are calculated using the delta method.

I. Extended Replication Rate Definition

This appendix analyzes a generalization of the replication rate definition that extends to in-

significant results. It outlines a number of issues with this proposal.



62

The Generalized Replication Rate.—Suppose we extend the definition of the replication rate

such that insignificant original results are counted as ‘successfully replicated’ if they are also

insignificant in replications. Assume replication selection is a random sample of published

results. Then we have the following definitions:

Definition I1 (Generalized Replication Probability of Individual Study). The replication prob-
ability of a study pX,Σ,Θq which is published pD “ 1q and chosen for replication (R “ 1) is

ĄRP
´

X,Θ, σrpX,Σ, βq

¯

“

$

’

’

&

’

’

%

P

ˆ

|Xr |

σrpX,Σ,βq
ě 1.96, signpXq “ signpXrq

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βq

˙

if 1.96.Σ ď |X|
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ˆ
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σrpX,Σ,βq
ă 1.96

ˇ

ˇ

ˇ
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˙

if 1.96.Σ ą |X|

(71)

Definition I2 (Expected Generalized Replication Probability). The expected generalized repli-
cation probability equals

E

”
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(72)

First, note that Definition I2 equals the standard replication rate definition when the expec-

tation is taken only over significant studies because, in this case, P
`

|X| ď 1.96.Σ
˘

“ 0. Thus,

the degree to which the expected generalized replication probability differs from the standard

expected replication probability depends on two factors. First, the share of published results

that are insignificant. Second, the expected probability that replications will be insignificant

conditional on original estimates being insignificant.32

Empirical Results.—To analyze the generalized replication rate, we can apply the empirical

approach outlined in the main text, but using the generalized definition in place of the original

definition. Recall that the original replication rate is invariant to publication bias against

null results. The generalized replication rate, by contrast, does vary as the degree of selective

publication against null results changes. Thus, two sets of results are presented for comparison.

The first set assumes selective publication using estimated selection parameters in Table 1 in the

main text. The second set assumes no selective publication (i.e. that all results are published

with equal probability). We examine two rules for calculating replication power: the common

power rule and the original power rule (where the replication standard error is set equal to the

original standard error). For more details on different rules for calculating replication power,

see Appendix G.

32Additionally, note that this definition implies that if θ “ 0, then ĄRP
´

X,Θ, σrpX,Σ, βq|Θ “ 0
¯

“ 0.90375.

That is, the replication probability of null results is constant and independent of power in original studies and
replication studies.
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Table I1 reports the results for both applications. Under the common power rule, the sim-

ulated generalized replication rate remains below intended power in both publication regimes.

Under the original power rule, it is relatively low when there is selective publication and around

80% when there is no selective publication.

These generalized replication rate predictions differs from the standard replication rate pre-

dictions for two reasons: (i) the share of insignificant results in the published literature and

(ii) the replication probability when results are insignificant, which depends on the power rule

used in replication studies. On the first point, moving from the selective publication regime

to the no selective publication regime implies a dramatic increase in the share of insignificant

published results; in both applications, null results change from a minority of published results

to a majority. On the second point, the results show that the replication power rules considered

here have some undesirable properties. First, note that the common power rule is designed to

detect original estimates with high statistical power. This implies that low-powered, insignifi-

cant original results will be high-powered in replications, which increases the probability that

they are significant and thus counted as replication ‘failures’ under the generalized definition.

The original power rule has the reverse problem. On the one hand, low-powered, insignificant

original studies are likely to be insignificant in replications, which counts as a ‘successful’ repli-

cation under the generalized definition. However, on the other hand, low-powered, significant

original studies will have low replication probabilities when the same low-powered design is

repeated in replications. The generalized replication rate therefore depends crucially on the

share of significant and insignificant findings in the published literature, and the distribution

of standard errors. Under the original power rule with no selective publication, the generalized

replication rate is around 80% in both applications; however, with greater power in original

studies, the replication rate would fall.

While the generalized replication rate changes as selective publication is reduced, the direc-

tion of this change depends on which replication power rule is used: with the original power

rule the replication rate increases, while with the common power rule it decreases.

Overall, generalizing the replication rate with Definition H2 does not deliver replication

rates close to intended power under the common power rule. For the original power rule, it is

higher when there is no selective publication because replications repeat low-power designs for

low-powered original studies with insignificant results. The generalized replication rate under

this original power rule will therefore be sensitive to the distribution of power in original studies.
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Table I1 – Predicted Generalized Replication Rate Results

Simulated statistics

A Economics experiments 92% for X Original power

Selective publication

Generalized replication rate 0.600 0.553
PpReplicated|SX “ 1q 0.600 0.551
PpReplicated|SX “ 0q 0.574 0.789
PpSX “ 1q 0.993 0.993
PpSX “ 0q 0.007 0.007

No selective publication

Generalized replication rate 0.432 0.773
PpReplicated|SX “ 1q 0.582 0.515
PpReplicated|SX “ 0q 0.378 0.867
PpSX “ 1q 0.268 0.268
PpSX “ 0q 0.732 0.732

B Psychology experiments

Selective Publication
Generalized replication rate 0.546 0.526
PpReplicated|SX “ 1q 0.544 0.487
PpReplicated|SX “ 0q 0.563 0.839
PpSX “ 1q 0.890 0.890
PpSX “ 0q 0.110 0.110

No selective publication

Generalized replication rate 0.490 0.798
PpReplicated|SX “ 1q 0.535 0.469
PpReplicated|SX “ 0q 0.478 0.886
PpSX “ 1q 0.209 0.209
PpSX “ 0q 0.791 0.791

Notes: Economics experiments refer to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). The generalized replication rate is defined in the text. The indicator variable SX equals
one for significant results and zero otherwise. Economics experiments refers to Camerer et al. (2016) and
psychology experiments to Open Science Collaboration (2015). Simulated statistics are based on parameter
estimates in Table 1 in the main text. Different column represent different rules for calculating power in
replications.

J. Prediction Interval Approach

This appendix provides details on the prediction interval approach from Patil et al. (2016) and

provides some guidance on implementing it for replicators.

The prediction interval approach in Patil et al. (2016) tests the following null hypothesis:

H0 : X „ NpΘ,Σ2
q and Xr „ NpΘ,Σ2

rq

This captures many of the primary concerns of replicators. For instance, this null is false if

the original study is biased due to publication bias of p-hacking, or if there is treatment effect

heterogeneity such that the true effect in the original and replication study differ.

Under this setup, Patil et al. (2016) test whether the difference in the original and replication
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estimates, X ´ Xr is statistically different from zero at the 5% level. Assuming X KK Xr, we

have X´Xr „ Np0, rΣ2q, with rΣ ”
a

Σ2 ` Σ2
r. Thus, under the null hypothesis, it follows that:

P
`

´ 1.96rΣ ď X ´ Xr ď 1.96rΣ
˘

“ P
`

X ´ 1.96rΣ ď Xr ď X ` 1.96rΣ
˘

“ 0.95 (73)

A replication estimate Xr is therefore deemed to be statistically consistent with original

estimate X under the null if the replication estimate lies within the ‘unnormalized prediction

interval’ pX ´ 1.96rΣ, X ` 1.96rΣq. Crucially, the power to reject this test depends on the

statistical power of both the original study and the replication study. Specifically, if either

original or replication studies have low power, then it may be difficult to detect even large

differences in original and replication estimates.

In the main text, I normalize the prediction interval to be in terms of relative effect sizes.

The motivation behind this is simply that relative effect sizes are commonly reported in the

replication literature, making them more convenient to interpret and compare across studies.

To do this, simply divide the interval bounds by the original estimate X. This implies that a

replication is deemed statistically consistent with the original study if the relative effect size

lies within the (normalized) prediction interval i.e. Xr

X
P p1 ´ 1.96

rΣ
X
, 1 ` 1.96

rΣ
X

q. Thus, when

the relative effect size deviates sufficiently far from one, we can reject the null hypothesis that

both estimates come from a normal distribution centered at the same true effect.

Note that for the replication of null results, it may be more appropriate to use the unnor-

malized prediction interval approach, namely, to reported whether Xr P pX´1.96rΣ, X`1.96rΣq.

This is because dividing by an original estimate that is close to zero might lead to extreme

values which are difficult to interpret.

J.1. Implementation

When implementing the prediction interval approach, care must be taken with which units

are used. Large-scale replication studies commonly convert all findings across different studies

into a standardized unit for comparing effect sizes (and relative effect sizes). For example,

in all three empirical applications in the main text, effect sizes are reported in correlation

coefficient units. However, inference is typically done by applying a Fisher transformation to

correlation coefficients, since this transformation provides approximately normally distributed

random variables for hypothesis testing (Fisher, 1915). The prediction interval approach is also

based on normally distributed estimates. Thus, reporting prediction intervals in their original

units requires a conversion back to the original units.

To illustrate how this could be done in practice, suppose the replicator observes original

and replication outcomes pρ,N, ρr, Nrq, where pρ, ρrq denote the correlation coefficients of the
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original and replication study, respectively; and pN,Nrq denote their respective sample sizes.

Suppose we are interested in applying the prediction interval approach, as recommended in the

main text. Doing so involves the following steps:

1. Normalization: normalize the original estimate to be positive. For example, if the

unnormalized correlation coefficients in the original and replication study have the same

sign, then both would be normalized as positive. If, on the other hand, they have opposite

signs then the original coefficient would be positive and the replication coefficient negative.

2. Fisher transformed variables: calculate x “ arctan ρ; σ “ 1{
?
N ´ 3; xr “ arctan ρr;

and σr “ 1{
?
Nr ´ 3.33 Define rσ ”

a

σ2 ` σ2
r .

3. Calculate prediction interval: finally, convert the prediction interval into the original

correlation coefficient units using the following formula:34

ˆ

tanh
`

x ´ 1.96rσ
˘

tanhx
,
tanh

`

x ` 1.96rσ
˘

tanhx

˙

and test whether the relative effect size ρr{ρ falls within this range.

33The formula for the standard deviation is from Fisher (1915).
34Note that normalization of the original effect to be positive implies tanhx ą 0.


